Congenital malformations resulting in late abortions and stillbirths affect the economic wellbeing of producers and the welfare of cattle in breeding programs. An extremely high incidence of stillbirths of "half-sized" calves of normal karyotype and uninflated lungs was diagnosed in the progeny of the Finnish Ayrshire (Bos taurus) bull--YN51. No other visible anatomical abnormalities were apparent in the stillborn calves. We herein describe the positional identification of a 110 kb microdeletion in the maternally imprinted PEG3 domain that results in a loss of paternal MIMT1 expression and causes late term abortion and stillbirth in cattle. Using the BovineSNP50 BeadChip we performed a genome-wide half-sib linkage analysis that identified a 13.3 Mb associated region on BTA18 containing the maternally imprinted PEG3 domain. Within this cluster we found a 110 kb microdeletion that removes a part of the non-protein coding MER1 repeat containing imprinted transcript 1 gene (MIMT1). To confirm the elimination of gene expression in calves inheriting this deletion, we examined the mRNA levels of the three maternally imprinted genes within the PEG3 domain, in brain and cotyledon tissue collected from eight fetuses sired by the proband. None of the fetuses that inherited the microdeletion expressed MIMT1 in either tissue. The mutation, when inherited from the sire, is semi-lethal for his progeny with an observed mortality rate of 85%. The survival of 15% is presumably due to the incomplete silencing of maternally inherited MIMT1 alleles. We designed a PCR-based assay to confirm the existence of the microdeletion in the MIMT1 region that can be used to assist cattle breeders in preventing the stillbirths.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2994898 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0015116 | PLOS |
Mol Cancer
January 2025
Molecular Epidemiology (MOLE), Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
VTRNA2-1 is a polymorphically imprinted locus. The proportion of individuals with a maternally imprinted VTRNA2-1 locus is consistently approximately 75% in populations of European origin, with the remaining circa 25% having a non-methylated VTRNA2-1 locus. Recently, VTRNA2-1 hypermethylation at birth was suggested to be a precursor of paediatric acute lymphoblastic leukaemia with biomarker potential.
View Article and Find Full Text PDFNat Commun
January 2025
Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056, Basel, Switzerland.
In the germ line and during early embryogenesis, DNA methylation (DNAme) undergoes global erasure and re-establishment to support germ cell and embryonic development. While DNAme acquisition during male germ cell development is essential for setting genomic DNA methylation imprints, other intergenerational roles for paternal DNAme in defining embryonic chromatin are unknown. Through conditional gene deletion of the de novo DNA methyltransferases Dnmt3a and/or Dnmt3b, we observe that DNMT3A primarily safeguards against DNA hypomethylation in undifferentiated spermatogonia, while DNMT3B catalyzes de novo DNAme during spermatogonial differentiation.
View Article and Find Full Text PDFBirth Defects Res
January 2025
Department of Zoology, University of Calcutta, Kolkata, India.
Background: Neural tube defects (NTDs) are defined as an incomplete closure of the neural tube (NT), with a prevalence of 1.2 per 1000 live births around the world. Methylation of the maternally imprinted gene Insulin-like growth factor 2 (IGF2) is one of the epigenetic mechanisms that contribute significantly to the development of NTDs.
View Article and Find Full Text PDFFront Genet
December 2024
Department of Obstetrics, Zhangzhou Municipal Hospital Affiliated to Fujian Medical University, Zhangzhou, China.
Introduction: Silver-Russell syndrome (SRS) is an imprinting disorder characterized by intrauterine and postnatal growth retardation. The pathogenic alterations and phenotypes are heterogeneous.
Methods: Here, we present a rare pedigree of duplications with different methylation patterns in 11p15.
Front Cell Dev Biol
December 2024
Institute of Experimental Genetics, Helmholtz Munich GmbH, German Research Center for Environmental Health, Neuherberg, Germany.
Sexual dimorphism involves distinct anatomical, physiological, behavioral, and developmental differences between males and females of the same species, influenced by factors prior to conception and during early development. These sex-specific traits contribute to varied phenotypes and individual disease risks within and across generations and understanding them is essential in mammalian studies. Hormones, sex chromosomes, and imprinted genes drive this dimorphism, with over half of quantitative traits in wildtype mice showing sex-based variation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!