Genetically-modified mutants are now indispensable Plasmodium gene-function reagents, which are also being pursued as genetically attenuated parasite vaccines. Currently, the generation of transgenic malaria-parasites requires the use of drug-resistance markers. Here we present the development of an FRT/FLP-recombinase system that enables the generation of transgenic parasites free of resistance genes. We demonstrate in the human malaria parasite, P. falciparum, the complete and efficient removal of the introduced resistance gene. We targeted two neighbouring genes, p52 and p36, using a construct that has a selectable marker cassette flanked by FRT-sequences. This permitted the subsequent removal of the selectable marker cassette by transient transfection of a plasmid that expressed a 37°C thermostable and enhanced FLP-recombinase. This method of removing heterologous DNA sequences from the genome opens up new possibilities in Plasmodium research to sequentially target multiple genes and for using genetically-modified parasites as live, attenuated malaria vaccines.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2994908PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0015121PLOS

Publication Analysis

Top Keywords

generation transgenic
8
selectable marker
8
marker cassette
8
removal heterologous
4
heterologous sequences
4
sequences plasmodium
4
plasmodium falciparum
4
falciparum mutants
4
mutants flpe-recombinase
4
flpe-recombinase genetically-modified
4

Similar Publications

Cell type-specific reporter transgenic chicken lines are invaluable tools in developmental biology, allowing the visualization of dynamics and differentiation states of target cell types in living embryos. Here, we report the establishment of a new transgenic chicken line in which limb mesenchyme and apical ectodermal ridge (AER) cells are labeled with different fluorescent proteins in the embryos. The processes for generating the reporter line involved using tissue-specific promoters, the Tol2 transposon-mediated genomic integration, and clonal culture system of primordial germ cells.

View Article and Find Full Text PDF

Growth inhibition and toxicity assessments of cis-3,4-diaryl-α-methylene-γ-butyrolactams in cultured human renal cancer cells and zebrafish embryos.

Biochim Biophys Acta Gen Subj

January 2025

Department of Chemistry, Tamkang University, 151, Yingzhuan Road, Danshui Dist., New Taipei City 25137, Taiwan. Electronic address:

This study aimed to compare and evaluate the growth inhibition effects of eight previously synthesized compounds, cis-3,4-diaryl-α-methylene-γ-butyrolactams (compounds 1-8), on two human renal carcinoma cell (RCC) lines: CRL-1932 (rapid growth) and HTB-44 (slow growth). MTT assays and flow cytometry were conducted, revealing that compounds 5 and 6 had the potential to induce cell death in the slow-growing RCC cells (HTB-44), while compound 8 demonstrated effectiveness in both RCC lines (HTB-44 and CRL-1932). Additionally, a non-transformed HEK293 cell line and a transgenic zebrafish with a green fluorescent kidney Tg(wt1b:egfp) were used to assess the toxicities of compounds 5, 6, and 8.

View Article and Find Full Text PDF

Spinocerebellar Ataxia Type 8 (SCA8) is an inherited neurodegenerative disease caused by a bidirectionally expressed CTG●CAG expansion mutation in the ATXN-8 and ATXN8-OS genes. While SCA8 patients have motor abnormalities, patients may also exhibit psychiatric symptoms and cognitive dysfunction. It is difficult to elucidate how the disease alters brain function in areas with little or no degeneration producing both motor and cognitive symptoms.

View Article and Find Full Text PDF

How novel structures emerge during evolution has long fascinated biologists. A dramatic example is how the diminutive bones of the mammalian middle ear arose from ancestral fish jawbones. In contrast, the evolutionary origin of the outer ear, another mammalian innovation, remains a mystery, in part because it is supported by non-mineralized elastic cartilage rarely recovered in fossils.

View Article and Find Full Text PDF

TaJUB1 is phosphorylated by TaMPK4 to enhance TaXIP3 transcription and reduce Cd accumulation.

J Hazard Mater

January 2025

School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou Province, China. Electronic address:

Cadmium (Cd) has been recognized as a prevalent toxic pollutant that poses a significant threat to human health through the food chain. To mitigate this risk, reducing Cd accumulation in crops is an effective strategy. In this work, we observed that the overexpression of TaXIP3 resulted in a substantial reduction in Cd accumulation in wheat.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!