Understanding and controlling the flow of heat is a major challenge in nanoelectronics. When a junction is driven out of equilibrium by light or the flow of electric charge, the vibrational and electronic degrees of freedom are, in general, no longer described by a single temperature. Moreover, characterizing the steady-state vibrational and electronic distributions in situ is extremely challenging. Here, we show that surface-enhanced Raman emission may be used to determine the effective temperatures for both the vibrational modes and the electrons in the current in a biased metallic nanoscale junction decorated with molecules. Molecular vibrations show mode-specific pumping by both optical excitation and d.c. current, with effective temperatures exceeding several hundred kelvin. Anti-Stokes electronic Raman emission indicates that the effective electronic temperature at bias voltages of a few hundred millivolts can reach values up to three times the values measured when there is no current. The precise effective temperatures are model-dependent, but the trends as a function of bias conditions are robust, and allow direct comparisons with theories of nanoscale heating.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nnano.2010.240 | DOI Listing |
J Comput Chem
January 2025
Scuola Superiore Meridionale, Napoli, Italy.
Light-driven molecular rotary motors are nanometric machines able to convert light into unidirectional motions. Several types of molecular motors have been developed to better respond to light stimuli, opening new avenues for developing smart materials ranging from nanomedicine to robotics. They have great importance in the scientific research across various disciplines, but a detailed comprehension of the underlying ultrafast photophysics immediately after photo-excitation, that is, Franck-Condon region characterization, is not fully achieved yet.
View Article and Find Full Text PDFOphthalmology
January 2025
Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Shandong Academy of Eye Disease Prevention and Therapy, Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Shandong Provincial Clinical Medical Research Center of Optometry and Children Visual Impairment Prevention and Control, Shandong Engineering Technology Research Center of Visual Intelligence, Shandong Institute of Children Health and Myopia Prevention and Control, Shandong, China; Shandong University of Traditional Chinese Medicine, Shandong, China; Ophthalmology & Optometry Medical School, Shandong University of Traditional Chinese Medicine, Shandong, China. Electronic address:
Purpose: To assess the efficacy of a behavioral intervention using Eye-Use Monitoring technology to delay the onset and progression of myopia in children.
Design: A prospective, cluster-randomized, parallel-groups, examiner-masked, clinical trial (Chinese Clinical Trial Registry, ChiCTR2100052101).
Participants: A total of 413 children from grades 2 to 4 in Shandong, China, from October 2021 to December 2023 were randomized by class into three groups: reminder & feedback (6 classes, 156 children), reminder-only (5 classes, 147 children), and control (3 classes, 110 children).
J Pharm Sci
January 2025
Department of Process and Life Science Engineering, Div. Food and Pharma, Lund University, P.O. Box 124, 22100 Lund, Sweden.
In hospitals, IV bags can be prepared in advance for logistical and microbial safety reasons in a compounding unit and then transported to wards. Transport of protein drugs using a pneumatic tube system has been reported to result in high particle levels. In this study, pneumatic tube transport of trastuzumab in saline polyolefin bags was compared to delivery by hospital porters using an electric platform truck in an underground tunnel system.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
Astrophysik/I. Physikalisches Institut, Universität zu Köln, Köln 50937, Germany.
The methoxy radical, CHO, has long been studied experimentally and theoretically by spectroscopists because it displays a weak Jahn-Teller effect in its electronic ground state, combined with a strong spin-orbit interaction. In this work, we report an extension of the measurement of the pure rotational spectrum of the radical in its vibrational ground state in the submillimeter-wave region (350-860 GHz). CHO was produced by H-abstraction from methanol using F atoms, and its spectrum was probed in absorption using an association of source-frequency modulation and Zeeman modulation spectroscopy.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.
We study the Raman signature of stripe domains in monolayer WMoS alloys, characterized using experimental techniques and density functional theory (DFT) calculations. These stripe domains were found in star-shaped monolayer WS exhibiting a high concentration of molybdenum (Mo) atoms in its central region, and unique Raman peaks that were not previously reported. We attribute these peaks to the splitting of the original doubly degenerate E modes, arising from the lower symmetry of the W-Mo stripe domains.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!