Individuals make choices and prioritize goals using complex processes that assign value to rewards and associated stimuli. During Pavlovian learning, previously neutral stimuli that predict rewards can acquire motivational properties, becoming attractive and desirable incentive stimuli. However, whether a cue acts solely as a predictor of reward, or also serves as an incentive stimulus, differs between individuals. Thus, individuals vary in the degree to which cues bias choice and potentially promote maladaptive behaviour. Here we use rats that differ in the incentive motivational properties they attribute to food cues to probe the role of the neurotransmitter dopamine in stimulus-reward learning. We show that intact dopamine transmission is not required for all forms of learning in which reward cues become effective predictors. Rather, dopamine acts selectively in a form of stimulus-reward learning in which incentive salience is assigned to reward cues. In individuals with a propensity for this form of learning, reward cues come to powerfully motivate and control behaviour. This work provides insight into the neurobiology of a form of stimulus-reward learning that confers increased susceptibility to disorders of impulse control.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3058375 | PMC |
http://dx.doi.org/10.1038/nature09588 | DOI Listing |
Cell Rep
January 2025
Department of Biology, Boston University, Boston, MA 02215, USA; Center for Neurophotonics, Boston University, Boston, MA 02215, USA; Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; Center for Systems Neuroscience, Boston University, Boston MA 02215, USA. Electronic address:
J Neurosci
December 2024
Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029
The neurotransmitter dopamine (DA) has a multifaceted role in healthy and disordered brains through its action on multiple subtypes of dopaminergic receptors. How modulation of these receptors influences learning and motivation by altering intrinsic brain-wide networks remains unclear. Here we performed parallel behavioral and resting-state functional MRI experiments after administration of two different DA receptor antagonists in male and female macaque monkeys.
View Article and Find Full Text PDFHorm Behav
December 2024
Department of Psychological and Brain Sciences, University of Massachusetts Amherst, Amherst, MA, United States of America.
Menopausal symptoms of sleep disturbances, cognitive deficits, and hot flashes are understudied, in part due to the lack of animal models in which they co-occur. Common marmosets (Callithrix jacchus) are valuable nonhuman primates for studying these symptoms, and we examined changes in cognition (reversal learning), sleep (48 h/wk of sleep recorded by telemetry), and thermoregulation (nose temperature in response to mild external warming) in middle-aged, surgically-induced menopausal marmosets studied at baseline, during 3-week phases of ethinyl estradiol (EE, 4 μg/kg/day, p.o.
View Article and Find Full Text PDFbioRxiv
November 2024
Department of Biological Sciences, Carnegie Mellon University; Pittsburgh 15213 U.S.A.
Somatostatin (SST)-expressing inhibitory neurons are a major class of neocortical γ-amino butyric acid (GABA) neurons, where morphological, electrophysiological, and transcriptomic analyses indicate more than a dozen different subtypes. However, whether this diversity is related to specific roles in cortical computations and plasticity remains unclear. Here we identify learning-dependent, subtype-specific plasticity in layer 2/3 SST neurons of the mouse somatosensory cortex.
View Article and Find Full Text PDFCommun Biol
November 2024
Perception and Cognition Lab, European Neuroscience Institute Goettingen - A Joint Initiative of the University Medical Center Goettingen and the Max-Planck-Society, Goettingen, Germany.
Neuroeconomics theories propose that the value associated with diverse rewards or reward-predicting stimuli is encoded along a common reference scale, irrespective of their sensory properties. However, in a dynamic environment with changing stimulus-reward pairings, the brain must also represent the sensory features of rewarding stimuli. The mechanism by which the brain balances these needs-deriving a common reference scale for valuation while maintaining sensitivity to sensory contexts-remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!