Prodrugs are a class of drug derivatives with little or no pharmacological activity that are converted in vivo to therapeutically active compounds. The primary utility of a prodrug approach is to improve pharmaceutical properties. Because it does not alter the primary structure of the parent drug, the synthesis of prodrugs is usually much less difficult than the synthesis of analogs. The derived physicochemical properties of the resulting derivatives can be carefully tailored by means of structural modification of the promoiety. However, sufficient levels of intrinsic activity of the parent drug need to be assured through in vivo cleavage of the prodrug. The prodrug approach has been successfully applied to a wide variety of drugs. This article briefly discusses advances in strategies for development of prodrugs and their mechanisms of drug release.

Download full-text PDF

Source
http://dx.doi.org/10.1097/MJT.0b013e3181f47f3fDOI Listing

Publication Analysis

Top Keywords

prodrug approach
8
parent drug
8
drug
5
advances prodrugs
4
prodrugs drug
4
drug delivery
4
delivery systems
4
systems prodrugs
4
prodrugs class
4
class drug
4

Similar Publications

Drug Development.

Alzheimers Dement

December 2024

Burke Neurological Institute, Weill Cornell Medicine, White Plains, NY, USA.

Background: Benfotiamine, a prodrug of thiamine, raises blood levels by 50-100 times to achieve pharmacologic effects. It provides a novel therapeutic direction addressing a well-characterized brain tissue thiamine deficiency and related changes in glucose metabolism in AD. BenfoTeam is a seamless phase 2A-2B "proof of concept" (POC), double-blind, placebo-controlled RCT investigating tolerability, safety, and efficacy of benfotiamine, as a first-in-class small molecule treatment for early AD.

View Article and Find Full Text PDF

Carbon quantum dots (CQDs) are a recently developed class of fluorescent nanoparticles made from carbon. Co-doping with heteroatoms such as nitrogen and sulfur improved the properties and generated a high quantum yield. In the proposed study, we utilized a simple, cost-effective, single-stage hydrothermal approach to produce extreme photoluminescence co-doped, nitrogen and sulfur, CQDs (N,S-CODs).

View Article and Find Full Text PDF

Infections caused by persistent, drug-resistant bacteria pose significant challenges in inflammation treatment, often leading to severe morbidity and mortality. Herein, the photosensitizer rhodamine derivatives are selected as the light-trapping dye and the electron-rich substituent N-nitrosoaminophen as the nitric oxide (NO)-releasing component to develop a multifunctional (deep) red-light activatable NO photocage/photodynamic prodrug for efficient treatment of wounds and diabetic foot infections. The prodrug, RhB-NO-2 integrates antimicrobial photodynamic therapy (aPDT), NO sterilization, and NO-mediated anti-inflammatory properties within a small organic molecule and is capable of releasing NO and generating Reactive oxygen species (ROS) when exposed to (deep) red laser (660 nm).

View Article and Find Full Text PDF

Artificial metalloenzyme assembly in cellular compartments for enhanced catalysis.

Nat Chem Biol

January 2025

State Key Laboratory of Chemo/Biosensing and Chemometrics and School of Chemistry and Chemical Engineering, Hunan University, Changsha, China.

Artificial metalloenzymes (ArMs) integrated within whole cells have emerged as promising catalysts; however, their sensitivity to metal centers remains a systematic challenge, resulting in diminished activity and turnover. Here we address this issue by inducing in cellulo liquid-liquid phase separation through a self-labeling fusion protein, HaloTag-SNAPTag. This strategy creates membraneless, isolated liquid condensates within Escherichia coli as protective compartments for the assembly of ArMs using the same fusion protein.

View Article and Find Full Text PDF

Gemcitabine (GEM), a chemotherapeutic agent, is widely utilized in treating various neoplasm conditions, such as pancreatic, lung, breast, and ovarian cancers. However, its therapeutic effectiveness is often hindered by its hydrophilic nature, short half-life and susceptibility to enzymatic degradation. To address these limitations, in this research, five new prodrugs of GEM were synthesized by conjugating its N-4 amino group with five different acids [4-decenoic acid (4Dec), lipoic acid (Lipo), lauric acid (Laur), 5-benzyl N-(tert-butoxycarbonyl)- L-glutamate (Glu), and decanoic acid (Dec)].

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!