Mitochondrial damage in adipose tissue of untreated HIV-infected patients.

AIDS

Mitochondrial Research Laboratory, Internal Medicine Department, Muscle Research Unit, IDIBAPS, University of Barcelona, Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Raras, Spain.

Published: January 2011

Objective: antiretrovirals, especially thymidine-analogue nucleoside reverse transcriptase inhibitors (tNRTIs), may cause the mitochondrial damage in adipose tissue that has been associated with lipodystrophy development. HIV itself may damage blood cell mitochondria. However, the viral capacity to induce adipose tissue mitochondrial lesion is still a matter of doubt. We aimed to assess whether untreated HIV infection was associated with adipose tissue mitochondrial abnormalities.

Design: : Single-site, cross-sectional, controlled observational and exploratory study without intervention.

Methods: we included 24 uninfected controls and 18 HIV-infected patients with undetectable viral load and no clinical signs of lipodystrophy stratified as antiretroviral naive (n = 11) or at least 6-month antiviral-treated with a double NRTI combination, including lamivudine plus one tNRTI (n = 7). Subcutaneous adipose tissue was homogenated to determine mtDNA content by rtPCR and mitochondrial function per mitochondria through the spectrophotometric measurement of cytochrome c oxidase activity normalized by citrate synthase amount (COX/citrate synthase). Differences in mitochondrial parameters among groups were sought to determine the contribution of HIV and antiretrovirals to mitochondrial alterations.

Results: compared with uninfected controls (arbitrarily assigned 100%), naive individuals presented a marked decrease in adipose tissue mtDNA content and COX/citrate synthase function (62 and 75% remaining content/activity, P < 0.001 and P < 0.05). Antiretrovirals did not increase this impairment (69 and 70% remaining content/activity, P < 0.05 compared to controls and P = not significant compared to naives). Additionally, molecular and functional mitochondrial parameters were positively correlated (P < 0.05).

Conclusion: in nonlipodystrophic HIV-infected naive patients, viral infection is associated with adipose tissue mtDNA decrease and mitochondrial dysfunction independently of antiretroviral treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1097/QAD.0b013e3283423219DOI Listing

Publication Analysis

Top Keywords

adipose tissue
28
mitochondrial
9
mitochondrial damage
8
damage adipose
8
hiv-infected patients
8
tissue mitochondrial
8
infection associated
8
associated adipose
8
uninfected controls
8
mtdna content
8

Similar Publications

Short-Term Assessment of High-Sensitivity C-Reactive Protein (hs-CRP) Changes Following One Anastomosis Gastric Bypass (OAGB) in Patients with Obesity: A Prospective Cohort Study.

Obes Surg

January 2025

Department of Surgery, Minimally Invasive Surgery Research Center, Division of Minimally Invasive and Bariatric Surgery, School of Medicine, Rasool‑E Akram Hospital, Iran University of Medical Sciences, Tehran, Iran.

Background: Obesity, characterized by excessive adipose tissue, is associated with chronic low-grade inflammation and elevated inflammatory markers such as high-sensitivity C-reactive protein (hs-CRP). This inflammation is linked to obesity-associated medical problems, including cardiovascular diseases. One anastomosis gastric bypass (OAGB) has emerged as an effective metabolic and bariatric surgical procedure to address severe obesity and its associated inflammatory state.

View Article and Find Full Text PDF

Background: For many colorectal cancer patients, primary surgery is the standard care of treatment. Further insights in perioperative care are crucial. The aim of this study is to assess the prognostic value of body composition for postoperative complications after laparoscopic and open colorectal surgery.

View Article and Find Full Text PDF

Semaglutide restores astrocyte-vascular interactions and blood-brain barrier integrity in a model of diet-induced metabolic syndrome.

Diabetol Metab Syndr

January 2025

Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation-Fiocruz, Campus Maré. Centro de Pesquisa, Inovação e Vigilância em Covid-19 e Emergências Sanitárias. Endereço: Av. Brasil, 4036-Bloco 2. Manguinhos, Rio de Janeiro, RJ, CEP 21040-361, Brazil.

Introduction: Metabolic syndrome (MetS) is a metabolic disorder related to obesity and insulin resistance and is the primary determinant of the development of low-intensity chronic inflammation. This continuous inflammatory response culminates in neuroimmune-endocrine dysregulation responsible for the metabolic abnormalities and morbidities observed in individuals with MetS. Events such as the accumulation of visceral adipose tissue, increased plasma concentrations of free fatty acids, tissue hypoxia, and sympathetic hyperactivity in individuals with MetS may contribute to the activation of the innate immune response, which compromises cerebral microcirculation and the neurovascular unit, leading to the onset or progression of neurodegenerative diseases.

View Article and Find Full Text PDF

Weight cycling exacerbates glucose intolerance and hepatic triglyceride storage in mice with a history of chronic high fat diet exposure.

J Transl Med

January 2025

Research Unit NeuroBiology of Diabetes, Helmholtz Munich, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.

Background: Obese subjects undergoing weight loss often fear the Yoyo dieting effect, which involves regaining or even surpassing their initial weight. To date, our understanding of such long-term obesity and weight cycling effects is still limited and often based on only short-term murine weight gain and loss studies. This study aimed to investigate the long-term impacts of weight cycling on glycemic control and metabolic health, focusing on adipose tissue, liver, and hypothalamus.

View Article and Find Full Text PDF

Wu-Mei-Wan enhances brown adipose tissue function and white adipose browning in obese mice via upregulation of HSF1.

Chin Med

January 2025

Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.

Background: This research aims to explore the anti-obesity potential of Wu-Mei-Wan (WMW), particularly its effects on adipose tissue regulation in obese mice induced by a high-fat diet (HFD). The study focuses on understanding the role of heat shock factor 1 (HSF1) in mediating these effects.

Methods: HFD-induced obese mice were treated with WMW.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!