Plant evolved a complex profile of responses to cope with changes of nutrient availability in the soil. These are based on a stringent control of expression and/or activity of proteins involved in nutrients transport and assimilation. Furthermore, a sensing and signaling system for scanning the concentration of substrates in the rooted area and for transmitting this information to the plant machinery controlling root development can be extremely useful for an efficient plant response. Ammonium represents for plants either a preferential nitrogen source or the trigger for toxicity symptoms depending by its concentration. We propose a role for the high affinity Lotus japonicus ammonium transporter LjAMT1;3 as an intracellular ammonium sensor to achieve a convenient modulation of the root development in conditions of potentially toxic external ammonium concentration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3115110 | PMC |
http://dx.doi.org/10.4161/psb.5.12.13856 | DOI Listing |
Adv Biotechnol (Singap)
February 2024
National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China.
Alternative splicing (AS) significantly enriches the diversity of transcriptomes and proteomes, playing a pivotal role in the physiology and development of eukaryotic organisms. With the continuous advancement of high-throughput sequencing technologies, an increasing number of novel transcript isoforms, along with factors related to splicing and their associated functions, are being unveiled. In this review, we succinctly summarize and compare the different splicing mechanisms across prokaryotes and eukaryotes.
View Article and Find Full Text PDFAdv Biotechnol (Singap)
October 2024
State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China.
The principle of the "growth-defense trade-off" governs how plants adjust their growth and defensive strategies in response to external factors, impacting interactions among plants, herbivorous insects, and their natural enemies. Mineral nutrients are crucial in modulating plant growth and development through their bottom-up effects. Emerging evidence has revealed complex regulatory networks that link mineral nutrients to plant defense responses, influencing the delicate balance between growth and defense against herbivores.
View Article and Find Full Text PDFAdv Biotechnol (Singap)
August 2024
State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China.
Extreme environments such as hyperarid, hypersaline, hyperthermal environments, and the deep sea harbor diverse microbial communities, which are specially adapted to extreme conditions and are known as extremophiles. These extremophilic organisms have developed unique survival strategies, making them ideal models for studying microbial diversity, evolution, and adaptation to adversity. They also play critical roles in biogeochemical cycles.
View Article and Find Full Text PDFAdv Biotechnol (Singap)
March 2024
State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
Plant lipids are a diverse group of biomolecules that play essential roles in plant architecture, physiology, and signaling. To advance our understanding of plant biology and facilitate innovations in plant-based product development, we must have precise methods for the comprehensive analysis of plant lipids. Here, we present a comprehensive overview of current research investigating plant lipids, including their structures, metabolism, and functions.
View Article and Find Full Text PDFAdv Biotechnol (Singap)
October 2023
State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
In plants, autophagy is a conserved process by which intracellular materials, including damaged proteins, aggregates, and entire organelles, are trafficked to the vacuole for degradation, thus maintaining cellular homeostasis. The past few decades have seen extensive research into the core components of the central autophagy machinery and their physiological roles in plant growth and development as well as responses to biotic and abiotic stresses. Moreover, several methods have been established for monitoring autophagic activities in plants, and these have greatly facilitated plant autophagy research.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!