Recent developments on the Kardar-Parisi-Zhang surface-growth equation.

Philos Trans A Math Phys Eng Sci

Instituto de Física de Cantabria (UC and CSIC), Avda. de los Castros, s/n, 39005 Santander, Spain.

Published: January 2011

The stochastic nonlinear partial differential equation known as the Kardar-Parisi-Zhang (KPZ) equation is a highly successful phenomenological mesoscopic model of surface and interface growth processes. Its suitability for analytical work, its explicit symmetries and its prediction of an exact dynamic scaling relation for a one-dimensional substratum led people to adopt it as a 'standard' model in the field during the last quarter of a century. At the same time, several conjectures deserving closer scrutiny were established as dogmas throughout the community. Among these, we find the beliefs that 'genuine' non-equilibrium processes are non-variational in essence, and that the exactness of the dynamic scaling relation owes its existence to a Galilean symmetry. Additionally, the equivalence among planar and radial interface profiles has been generally assumed in the literature throughout the years. Here--among other topics--we introduce a variational formulation of the KPZ equation, remark on the importance of consistency in discretization and challenge the mainstream view on the necessity for scaling of both Galilean symmetry and the one-dimensional fluctuation-dissipation theorem. We also derive the KPZ equation on a growing domain as a first approximation to radial growth, and outline the differences with respect to the classical case that arises in this new situation.

Download full-text PDF

Source
http://dx.doi.org/10.1098/rsta.2010.0259DOI Listing

Publication Analysis

Top Keywords

kpz equation
12
dynamic scaling
8
scaling relation
8
galilean symmetry
8
equation
5
developments kardar-parisi-zhang
4
kardar-parisi-zhang surface-growth
4
surface-growth equation
4
equation stochastic
4
stochastic nonlinear
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!