E26 Transformation specific (Ets) family transcription factors control the expression of a large number of genes regulating hematopoietic cell development and function. Two such transcription factors, Ets-1 and myeloid Elf-1-like factor (MEF), have been shown to play critical roles in both natural killer (NK)- and NKT-cell development, but not in the development of conventional T cells. In this study, we address the role of E74-like factor 1 (Elf-1), another Ets family transcription factor that is closely related to MEF but divergent from Ets-1, in NK- and NKT-cell development using Elf-1-deficient (Elf-1(-/-)) mice. Whereas the proportion of NK cells in Elf-1(-/-) mice was normal, the proportion of NKT cells was significantly reduced in the thymus and periphery of Elf-1(-/-) mice compared with wild-type (WT) mice. Although Ets-1-deficient mice lack NKT cells altogether, Elf-1(-/-) mice exhibited only a partial block in NKT-cell development caused by a cell-intrinsic defect in the selection, survival, and maturation of NKT cells. In addition, residual NKT cells found in Elf-1(-/-) mice produced less cytokine upon antigen stimulation compared with WT NKT cells. Our data demonstrate that Elf-1 plays an important and nonredundant role in the development and function of NKT cells, but is not involved in NK-cell development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3056637PMC
http://dx.doi.org/10.1182/blood-2010-09-309468DOI Listing

Publication Analysis

Top Keywords

nkt cells
28
elf-1-/- mice
20
nkt-cell development
12
cells
10
transcription factor
8
factor elf-1
8
development
8
ets family
8
family transcription
8
transcription factors
8

Similar Publications

AXL: shapers of tumor progression and immunosuppressive microenvironments.

Mol Cancer

January 2025

Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, 400042, China.

As research progresses, our understanding of the tumor microenvironment (TME) has undergone profound changes. The TME evolves with the developmental stages of cancer and the implementation of therapeutic interventions, transitioning from an immune-promoting to an immunosuppressive microenvironment. Consequently, we focus intently on the significant role of the TME in tumor proliferation, metastasis, and the development of drug resistance.

View Article and Find Full Text PDF

Engineered Cellular Therapies for the Treatment of Thoracic Cancers.

Cancers (Basel)

December 2024

Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, USA.

Thoracic malignancies (lung cancers and malignant pleural mesothelioma) are prevalent worldwide and are associated with high morbidity and mortality. Effective treatments are needed for patients with advanced disease. Cell therapies are a promising approach to the treatment of advanced cancers that make use of immune effector cells that have the ability to mediate antitumor immune responses.

View Article and Find Full Text PDF

Neutrophil and Colorectal Cancer.

Int J Mol Sci

December 2024

Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan.

Colorectal cancer (CRC) is often associated with metastasis and recurrence and is the leading cause of cancer-related mortality. In the progression of CRC, recent studies have highlighted the critical role of neutrophils, particularly tumor-associated neutrophils (TANs). TANs have both tumor-promoting and tumor-suppressing activities, contributing to metastasis, immunosuppression, angiogenesis, and epithelial-to-mesenchymal transition.

View Article and Find Full Text PDF

SUGT1 is a prognostic biomarker and is associated with immune infiltrates in ovarian cancer.

Eur J Med Res

January 2025

Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, NO. 3 Qingchun East Road, Hangzhou, 310016, China.

Background: Ovarian cancer (OC) is a prevalent gynecological malignancy with a relatively dismal prognosis. The SGT1 homolog (SUGT1) protein, which interacts with heat shock protein 90 and is essential for the G1/S and G2/M transitions, was formerly thought to be a cancer promoter, but its precise role in OC remains unknown.

Methods: We conducted a comprehensive bioinformatics analysis of SUGT1 expression in patients with OC compared with their normal controls, including the data from the cancer genome atlas (TCGA), genotype-tissue expression (GTEx) databases, gene ontology (GO) analysis, Kyoto Encylopedia of Genes and Genomes (KEGG) analysis, gene set enrichment analysis (GSEA), single sample gene set enrichment analysis (ssGSEA).

View Article and Find Full Text PDF

CD70-targeted iPSC-derived CAR-NK cells display potent function against tumors and alloreactive T cells.

Cell Rep Med

December 2024

Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 311121, China; Institute of Hematology, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou 310058, China. Electronic address:

Clinical application of autologous chimeric antigen receptor (CAR)-T cells is complicated by limited targeting of cancer types, as well as the time-consuming and costly manufacturing process. We develop CD70-targeted, induced pluripotent stem cell-derived CAR-natural killer (NK) (70CAR-iNK) cells as an approach for universal immune cell therapy. Besides the CD70-targeted CAR molecule, 70CAR-iNK cells are modified with CD70 gene knockout, a high-affinity non-cleavable CD16 (hnCD16), and an interleukin (IL)-15 receptor α/IL-15 fusion protein (IL15RF).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!