The adipocyte-derived hormone leptin regulates energy homeostasis and the innate immune response. We previously reported that leptin plays a protective role in bacterial pneumonia, but the mechanisms by which leptin regulates host defense remain poorly understood. Leptin binding to its receptor, LepRb, activates multiple intracellular signaling pathways, including ERK1/2, STAT5, and STAT3. In this study, we compared the responses of wild-type and s/s mice, which possess a mutant LepRb that prevents leptin-induced STAT3 activation, to determine the role of this signaling pathway in pneumococcal pneumonia. Compared with wild-type animals, s/s mice exhibited greater survival and enhanced pulmonary bacterial clearance after an intratracheal challenge with Streptococcus pneumoniae. We also observed enhanced phagocytosis and killing of S. pneumoniae in vitro in alveolar macrophages (AMs) obtained from s/s mice. Notably, the improved host defense and AM antibacterial effector functions in s/s mice were associated with increased cysteinyl-leukotriene production in vivo and in AMs in vitro. Augmentation of phagocytosis in AMs from s/s mice could be blocked using a pharmacologic cysteinyl-leukotriene receptor antagonist. Phosphorylation of ERK1/2 and cytosolic phospholipase A(2) α, known to enhance the release of arachidonic acid for subsequent conversion to leukotrienes, was also increased in AMs from s/s mice stimulated with S. pneumoniae in vitro. These data indicate that ablation of LepRb-mediated STAT3 signaling and the associated augmentation of ERK1/2, cytosolic phospholipase A(2) α, and cysteinyl-leukotriene synthesis confers resistance to s/s mice during pneumococcal pneumonia. These data provide novel insights into the intracellular signaling events by which leptin contributes to host defense against bacterial pneumonia.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3133444 | PMC |
http://dx.doi.org/10.4049/jimmunol.1001470 | DOI Listing |
Sci Rep
January 2025
Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
There are limited studies on the improvement of leaky gut with minor inflammation associated with various diseases. To explore the therapeutic potential of Lactiplantibacillus plantarum 22 A-3, a member of the Lactobacillus species, in addressing a leaky gut. Lactiplantibacillus plantarum 22 A-3 was administered to a leaky gut mice model with low dextran sulfate sodium concentrations.
View Article and Find Full Text PDFNat Commun
January 2025
Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany.
Chronic lymphocytic leukemia is a malignant lymphoproliferative disorder for which primary or acquired drug resistance represents a major challenge. To investigate the underlying molecular mechanisms, we generate a mouse model of ibrutinib resistance, in which, after initial treatment response, relapse under therapy occurrs with an aggressive outgrowth of malignant cells, resembling observations in patients. A comparative analysis of exome, transcriptome and proteome of sorted leukemic murine cells during treatment and after relapse suggests alterations in the proteasome activity as a driver of ibrutinib resistance.
View Article and Find Full Text PDFInt J Radiat Oncol Biol Phys
January 2025
Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, Texas, USA. Electronic address:
Purpose: Proton FLASH has been investigated using cyclotron and synchrocyclotron beamlines but not synchrotron beamlines. We evaluated the impact of dose rate (ultra-high [UHDR] vs. conventional [CONV]) and beam configuration (shoot-through [ST] vs.
View Article and Find Full Text PDFPharmaceutics
December 2024
Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
: Extracellular vesicles (EVs) can carry pathological cargo, contributing to disease progression. The enzyme neutral sphingomyelinase 2 (nSMase2) plays a critical role in EV biogenesis, making it a promising therapeutic target. Our lab previously identified a potent and selective inhibitor of nSMase2, named DPTIP (IC = 30 nM).
View Article and Find Full Text PDFCirc Res
January 2025
Key Laboratory of Drug Targets and Translational Medicine for Cardio-cerebrovascular Diseases, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Jiangsu, China (X.T., X.L., X.S., Y. Zhang, Y. Zu, Q.F., L.H., S.S., F.C., L.X., Y.J.).
Background: The decrease in S-nitrosoglutathione reductase (GSNOR) leads to an elevation of S-nitrosylation, thereby exacerbating the progression of cardiomyopathy in response to hemodynamic stress. However, the mechanisms under GSNOR decrease remain unclear. Here, we identify NEDD4 (neuronal precursor cell expressed developmentally downregulated 4) as a novel molecule that plays a crucial role in the pathogenesis of pressure overload-induced cardiac hypertrophy, by modulating GSNOR levels, thereby demonstrating significant therapeutic potential.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!