Multidimensional compound-specific stable isotope analysis (CSIA) was applied in combination with RNA-based molecular tools to characterize methyl tertiary (tert-) butyl ether (MTBE) degradation mechanisms occurring in biofilms in an aerated treatment pond used for remediation of MTBE-contaminated groundwater. The main pathway for MTBE oxidation was elucidated by linking the low-level stable isotope fractionation (mean carbon isotopic enrichment factor [ε(C)] of -0.37‰ ± 0.05‰ and no significant hydrogen isotopic enrichment factor [ε(H)]) observed in microcosm experiments to expression of the ethB gene encoding a cytochrome P450 monooxygenase able to catalyze the oxidation of MTBE in biofilm samples both from the microcosms and directly from the ponds. 16S rRNA-specific primers revealed the presence of a sequence 100% identical to that of Methylibium petroleiphilum PM1, a well-characterized MTBE degrader. However, neither expression of the mdpA genes encoding the alkane hydroxylase-like enzyme responsible for MTBE oxidation in this strain nor the related MTBE isotope fractionation pattern produced by PM1 could be detected, suggesting that this enzyme was not active in this system. Additionally, observed low inverse fractionation of carbon (ε(C) of +0.11‰ ± 0.03‰) and low fractionation of hydrogen (ε(H) of -5‰ ± 1‰) in laboratory experiments simulating MTBE stripping from an open surface water body suggest that the application of CSIA in field investigations to detect biodegradation may lead to false-negative results when volatilization effects coincide with the activity of low-fractionating enzymes. As shown in this study, complementary examination of expression of specific catabolic genes can be used as additional direct evidence for microbial degradation activity and may overcome this problem.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3028751PMC
http://dx.doi.org/10.1128/AEM.01698-10DOI Listing

Publication Analysis

Top Keywords

stable isotope
12
isotope fractionation
12
linking low-level
8
low-level stable
8
cytochrome p450
8
ethb gene
8
aerated treatment
8
treatment pond
8
mtbe oxidation
8
fractionation carbon
8

Similar Publications

The [18F] F-PSMA Probe: Chemical Perspectives.

Curr Med Chem

January 2025

Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Laboratory of Novel Radiopharmaceuticals and Nanoradiopharmacy, Rio de Janeiro, 21941906, Brazil.

This study discusses the chemical perspectives of the [18F]F-PSMA probe, a pivotal tool in prostate cancer imaging. [18F]Fluorine, a positron emitter with a half-life of 109.8 minutes, is produced in a cyclotron by bombarding [18O]-enriched targets with protons.

View Article and Find Full Text PDF

Determining the harvest location of timber is crucial to enforcing international regulations designed to protect natural resources and to tackle illegal logging and associated trade in forest products. Stable isotope ratio analysis (SIRA) can be used to verify claims of timber harvest location by matching levels of naturally occurring stable isotopes within wood tissue to location-specific ratios predicted from reference data ("isoscapes"). However, overly simple models for predicting isoscapes have so far limited the confidence in derived predictions of timber provenance.

View Article and Find Full Text PDF

Background: The immunopeptidome is constantly monitored by T cells to detect foreign or aberrant HLA peptides. It is highly dynamic and reflects the current cellular state, enabling the immune system to recognize abnormal cellular conditions, such as those present in cancer cells. To precisely determine how changes in cellular processes, such as those induced by drug treatment, affect the immunopeptidome, quantitative immunopeptidomics approaches are essential.

View Article and Find Full Text PDF

Increased glycolytic flux is a hallmark of cancer; however, an increasing body of evidence indicates that glycolytic ATP production may be dispensable in cancer, as metabolic plasticity allows cancer cells to readily adapt to disruption of glycolysis by increasing ATP production via oxidative phosphorylation. Using functional genomic screening, we show here that liver cancer cells show a unique sensitivity toward aldolase A (ALDOA) depletion. Targeting glycolysis by disrupting the catalytic activity of ALDOA led to severe energy stress and cell cycle arrest in murine and human hepatocellular carcinoma cell lines.

View Article and Find Full Text PDF

Permafrost soils store vast amounts of organic carbon, and their thawing due to climate warming accelerates the release of carbon as methane and carbon dioxide, exacerbating global climate change. Understanding the distribution of greenhouse gases trapped in these soils and predicting their behavior upon thawing is essential for accurately modeling climate feedbacks. This study presents an integrated biogeochemical and microbial dataset from ~1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!