Ceramides, which are membrane sphingolipids and key mediators of cell-stress responses, are generated by a family of (dihydro) ceramide synthases (Lass1-6/CerS1-6). Here, we report that brain development features significant increases in sphingomyelin, sphingosine, and most ceramide species. In contrast, C(16:0)-ceramide was gradually reduced and CerS6 was down-regulated in mitochondria, thereby implicating CerS6 as a primary ceramide synthase generating C(16:0)-ceramide. Investigations into the role of CerS6 in mitochondria revealed that ceramide synthase down-regulation is associated with dramatically decreased mitochondrial Ca(2+)-loading capacity, which could be rescued by addition of ceramide. Selective CerS6 complexing with the inner membrane component of the mitochondrial permeability transition pore was detected by immunoprecipitation. This suggests that CerS6-generated ceramide could prevent mitochondrial permeability transition pore opening, leading to increased Ca(2+) accumulation in the mitochondrial matrix. We examined the effect of high CerS6 expression on cell survival in primary oligodendrocyte (OL) precursor cells, which undergo apoptotic cell death during early postnatal brain development. Exposure of OLs to glutamate resulted in apoptosis that was prevented by inhibitors of de novo ceramide biosynthesis, myriocin and fumonisin B1. Knockdown of CerS6 with siRNA reduced glutamate-triggered OL apoptosis, whereas knockdown of CerS5 had no effect: the pro-apoptotic role of CerS6 was not stimulus-specific. Knockdown of CerS6 with siRNA improved cell survival in response to nerve growth factor-induced OL apoptosis. Also, blocking mitochondrial Ca(2+) uptake or decreasing Ca(2+)-dependent protease calpain activity with specific inhibitors prevented OL apoptosis. Finally, knocking down CerS6 decreased calpain activation. Thus, our data suggest a novel role for CerS6 in the regulation of both mitochondrial Ca(2+) homeostasis and calpain, which appears to be important in OL apoptosis during brain development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3039377PMC
http://dx.doi.org/10.1074/jbc.M110.164392DOI Listing

Publication Analysis

Top Keywords

ceramide synthase
12
mitochondrial ca2+
12
brain development
12
role cers6
12
cers6
10
ceramide
8
mitochondrial permeability
8
permeability transition
8
transition pore
8
cell survival
8

Similar Publications

Background: Multiple sclerosis (MS) is a chronic autoimmune condition that damages the myelin sheath of neurons in the central nervous system, resulting in compromised nerve transmission and motor impairment. The astrocytopathy is considered one of the prominent etiological factor in the pathophysiology of demyelination in MS. The expression level of ceramide synthase-2 (CS-2) is yet to be established in the pathophysiology of astrocytopathy although the derailed ceramide biosynthetic pathways is well demonstrated in the pathophysiology of demyelination.

View Article and Find Full Text PDF

Radiotherapy stands as a cornerstone in cancer therapy, with nuclear DNA acknowledged as the principal target molecule for radiation-induced cellular demise or injury. Nonetheless, an expanding body of contemporary research elucidates the significant contri-bution of sphingolipids to radiation-induced cell death, particularly in modulating radiation-induced apoptosis. Radiation can instigate apoptosis through multiple pathways of sphin-golipid metabolism, encompassing the activation of ceramide synthase, acid sphingomyelin-ase, neutral sphingomyelinase, sphingosine-1-phosphate lyase, and sphingosine-1-phosphate phosphatase, and the inhibition of sphingosine kinase-1.

View Article and Find Full Text PDF

Plant sphingolipids are lipophilic membrane components essential for different cellular functions but they also act as signaling molecules in various aspects of plant development. However, the interaction between plant sphingolipids and abscission remains largely uncharacterized. Here, the possible role of sphingolipids in regulating fruit abscission was examined in the abscission zone (AZ) of olive fruit.

View Article and Find Full Text PDF

Bisphenol A exacerbates colorectal cancer progression through enhancing ceramide synthesis.

Toxicology

January 2025

Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, PR China. Electronic address:

Bisphenol A (BPA) is a typical environmental endocrine disruptor which have been broadly confirmed to be associated with malignant tumors, including colorectal cancer (CRC). Lipid metabolism reprogramming performed important biological effects in cancer progression. While the role of lipid metabolism in CRC progression upon BPA exposure remain elusive.

View Article and Find Full Text PDF

Protective effects and bioinformatic analysis of narciclasine on vascular aging via cross-talk between inflammation and metabolism through inhibiting skeletal muscle-specific ceramide synthase 1.

Mech Ageing Dev

February 2025

School of Medicine, Nankai University, 94 Weijin Road, Tianjin 30071, China; Institude of Chinese PLA Geriatric Medicine, The Second Medical Centre, Chinese PLA General Hospital & National Clinical Research Center for Geriatric Diseases, Beijing 100853, China. Electronic address:

Objective: The senescence of smooth muscle is one of the independent risk factors in atherosclerosis progression in which the vascular inflammation plays an important role on vascular dysfunction. This study is designed to explore the novel vascular aging biomarkers and screen the potential molecular interventional targets through bioinformatic analysis.

Results: Transcriptional analysis was conducted based on the GSE16487 open access database, which included 15 human vascular tissue samples from two groups: young group (≤ 60 years old, n = 8) and aged group (≥ 75 years old, n = 7).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!