LPS is an efficient sensitizer of the neutrophil exocytic response to a second stimulus. Although neutrophil exocytosis in response to pathogen-derived molecules plays an important role in the innate immune response to infections, the molecular mechanism underlying LPS-dependent regulation of neutrophil exocytosis is currently unknown. The small GTPase Rab27a and its effector Munc13-4 regulate exocytosis in hematopoietic cells. Whether Rab27a and Munc13-4 modulate discrete steps or the same steps during exocytosis also remains unknown. Here, using Munc13-4- and Rab27a-deficient neutrophils, we analyzed the mechanism of lipopolysaccharide-dependent vesicular priming to amplify exocytosis of azurophilic granules. We found that both Munc13-4 and Rab27a are necessary to mediate LPS-dependent priming of exocytosis. However, we show that LPS-induced mobilization of a small population of readily releasable vesicles is a Munc13-4-dependent but Rab27a-independent process. LPS-induced priming regulation could not be fully explained by secretory organelle maturation as the redistribution of the secretory proteins Rab27a or Munc13-4 in response to LPS treatment was minimal. Using total internal reflection fluorescence microscopy and a novel mouse model expressing EGFP-Rab27a under the endogenous Rab27a promoter but lacking Munc13-4, we demonstrate that Munc13-4 is essential for the mechanism of LPS-dependent exocytosis in neutrophils and unraveled a novel mechanism of vesicular dynamics in which Munc13-4 restricts motility of Rab27a-expressing vesicles to facilitate lipopolysaccharide-induced priming of exocytosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3037678 | PMC |
http://dx.doi.org/10.1074/jbc.M110.184762 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!