AI Article Synopsis

Article Abstract

Curcumin a poly-phenolic compound possesses diverse pharmacologic activities; however, its development as a drug has been severely impeded by extremely poor oral bioavailability. Poor aqueous solubility and extensive metabolism have been implicated for this but the role of membrane permeability has not been investigated. In the present study, permeability of curcumin was assessed using the Caco-2 cell line. Curcumin was poorly permeable with a P(app) (A → B) value of 2.93 ± 0.94 × 10(-6)cm/s. P(app) value in (B → A) study was found out to be 2.55 ± 0.02 × 10(-6)cm/s, thus ruling out the role of efflux pathways in poor oral bioavailability of curcumin. Studies using verapamil, a P-gp inhibitor, further confirmed this finding. Detailed mass balance studies showed loss of curcumin during transport. Further experiments using lysed cells revealed that 11.78% of curcumin was metabolized during transport. Studies using itraconazole, a CYP3A4 inhibitor, established its role in curcumin metabolism. Curcumin was also found to accumulate in cells as revealed by CLSM studies. Sorption and desorption kinetic studies further confirmed accumulation of curcumin inside the cells. Amount accumulated was quantitated by HPLC and found to be >20%. Thus, intestinal first-pass metabolism and intracellular accumulation played a role in poor permeability of curcumin. Based on its poor aqueous solubility and intestinal permeability, curcumin can be classified as a BCS Class IV molecule. This information can facilitate designing of drug delivery systems for enhancement of oral bioavailability of curcumin.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejpb.2010.12.006DOI Listing

Publication Analysis

Top Keywords

curcumin
13
oral bioavailability
12
permeability curcumin
12
caco-2 cell
8
poor oral
8
poor aqueous
8
aqueous solubility
8
papp →
8
bioavailability curcumin
8
cells revealed
8

Similar Publications

Enhancing curcumin stability and bioavailability through chickpea protein isolate-citrus pectin conjugate emulsions: Targeted delivery and gut microecology modulation.

Int J Biol Macromol

January 2025

School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi University, Shihezi, Xinjiang 832000, China. Electronic address:

The limited solubility, rapid metabolism, and poor bioavailability of curcumin restrict its application. In this study, we synthesized chickpea protein isolate (CPI)-citrus pectin (CP) conjugates to prepare an emulsion delivery system that enhances the stability and bioavailability of curcumin. The CPI-CP emulsion achieved a curcumin encapsulation efficiency of 86.

View Article and Find Full Text PDF

In recent years, the use of cationic peptides as alternative drugs with anticancer activity has received attention. In this study, the targeted release of curcumin (Cur) and CM11 peptide alone and together against hepatocellular carcinoma (HCC) was evaluated using chitosan nanoparticles (CS NPs) coated with Pres1 that target the SB3 antigen of HCC cells (PreS1-Cur-CM11-CS NPs). SB3 protein is the specific antigen of HCC and the PreS1 peptide is a part of the hepatitis B antigen, which can specifically bind to the SB3 protein.

View Article and Find Full Text PDF

Plant Compounds Inhibit the Growth of W12 Cervical Precancer Cells Containing Episomal or Integrant HPV DNA; Tanshinone IIA Synergizes with Curcumin in Cervical Cancer Cells.

Viruses

December 2024

Department of Rehabilitation and Regenerative Medicine, College of Physicians and Surgeons, Columbia University, HHSC-1518, 701 W. 168th Street, New York, NY 10032, USA.

This study explores the effects of plant compounds on human papillomavirus (HPV)-induced W12 cervical precancer cells and bioelectric signaling. The aim is to identify effective phytochemicals, both individually and in combination, that can prevent and treat HPV infection and HPV associated cervical cancer. Phytochemicals were tested using growth inhibition, combination, gene expression, RT PCR, and molecular docking assays.

View Article and Find Full Text PDF

Background/objectives: This study investigates for the first time the use of the prilling technique in combination with solvent evaporation to produce nano- and submicrometric PLGA particles to deliver properly an active pharmaceutical ingredient. Curcumin (CCM), a hydrophobic compound classified under BCS (Biopharmaceutics Classification System) class IV, was selected as the model drug.

Methods: Key process parameters, including polymer concentration, solvent type, nozzle size, and surfactant levels, were optimized to obtain stable particles with a narrow size distribution determined by DLS analysis.

View Article and Find Full Text PDF

Curcumin, a bioactive compound derived from the rhizome of L., has garnered significant attention for its potent anticancer properties. Despite its promising therapeutic potential, its poor bioavailability, rapid metabolism, and low water solubility hinder curcumin's clinical application.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!