Background: Increased sperm ubiquitin was inversely associated with sperm count and motility. Ubiquitin-specific protease 26 (USP26), which is an X-linked gene, has been studied as a potential infertility gene. There are conflicting reports on whether variations in USP26 are associated with spermatogenesis.
Methods: In order to assess that USP26 polymorphisms contribute to male infertility, we screened 221 infertile men with azoospermia, oligozoospermia, asthenozoospermia, or oligoasthenozoospermia, and 101 control fertile men using DNA sequencing.
Results: There were six polymorphisms identified, including an unreported variation (508G>A, G170R). Only the allele frequency of 576G>A was significantly higher in fertile men than infertile patients (p<0.001), although this variant does not result in an amino acid change. The major haplotypes in fertile and infertile men were TGATC (76.2% vs 47.5% of the population, p<0.001) and TGGTC (14.9% vs 39.4%, p<0.001). The haplotype TGATC was under-transmitted, whereas the haplotype TGGTC was over-transmitted in infertile men with asthenozoospermia and oligoasthenozoospermia.
Conclusions: Our results indicated the variation of USP26 was not directly associated with human sperm count but suggested it might be a potential role in sperm motility. The 576G>A synonymous single nucleotide polymorphism (SNP) might have a role in improving the sperm motility.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cca.2010.12.005 | DOI Listing |
J Med Virol
January 2025
The Wistar Institute, Philadelphia, Pennsylvania, USA.
Epstein-Barr virus (EBV) is a ubiquitous human ɣ-herpesvirus implicated in various malignancies, including Burkitt's lymphoma and gastric carcinomas. In most EBV-associated cancers, the viral genome is maintained as an extrachromosomal episome by the EBV nuclear antigen-1 (EBNA1). EBNA1 is considered to be a highly stable protein that interacts with the ubiquitin-specific protease 7 (USP7).
View Article and Find Full Text PDFFuture Med Chem
January 2025
Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Hunan, China.
Reversible protein ubiquitination is a crucial factor in cellular homeostasis, with Ubiquitin-Specific Protease 1 (USP1) serving as a key deubiquitinase involved in DNA damage response (DDR) and repair mechanisms in cancer. While ubiquitin ligases have been extensively studied, research on the reverse process of ubiquitination, particularly the mechanisms involving USP1, remains relatively limited. USP1 is overexpressed in various cancers, influencing tumor initiation and progression by regulating multiple associated proteins.
View Article and Find Full Text PDFBiochem Genet
January 2025
Department of Neurology, The Second Affiliated Hospital of Nanchang University, No.1, Minde Road, Nanchang, 330006, Jiangxi Province, P. R. China.
Osteoporosis (OP) is a common clinical bone disease that can cause a high incidence of non-stress fractures and is one of the main degenerative diseases that endangers the health and life of middle-aged and older women. The mechanism underlying the abnormal differentiation and function of human bone marrow stem cells (hBMSCs) remains to be elucidated. Cell proliferation and differentiation were determined using 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di-phenytetrazoliumromide (MTT) assay, alkaline phosphatase (ALP) staining, and Alizarin Red Staining.
View Article and Find Full Text PDFJ Transl Med
January 2025
Department of General Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.1, Minde Road, Nanchang, 330006, Jiangxi, China.
Background: HCC is characterized by a high interstitial fluid pressure (HIFP) environment, which appears to support cancer cell survival. However, the mechanisms behind this phenomenon are not fully understood.
Methods: This study investigates the role of kinesin family member 11 (KIF11) in HCC under HIFP conditions, using both in vivo and in vitro models.
Acta Pharm Sin B
December 2024
Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
Inducing the degradation of KRAS represents a novel strategy to combat cancers with KRAS mutation. In this study, we identify ubiquitin-specific protease 2 (USP2) as a novel deubiquitinating enzyme of KRAS in multiple myeloma (MM). Specifically, we demonstrate that gambogic acid (GA) forms a covalent bond with the cysteine 284 residue of USP2 through an allosteric pocket, inhibiting its deubiquitinating activity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!