A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Methionine-pyrene hybrid based fluorescent probe for trace level detection and estimation of Hg(II) in aqueous environmental samples: experimental and computational studies. | LitMetric

A new fluorescent, Hg(2+) selective chemosensor, 4-methylsulfanyl-2-[(pyren-4-ylmethylene)-amino] butyric acid methyl ester (L, MP) was synthesized by blending methionine with pyrene. It was well characterized by different analytical techniques, viz. (1)H NMR, (13)C NMR, QTOF mass spectra, elemental analysis, FTIR and UV-vis spectroscopy. The reaction of this ligand with Hg(2+) was studied by steady state and time-resolved fluorescence spectroscopy. The Hg(2+) complexation process was confirmed by comparing FTIR, UV-vis, thermal, QTOF mass spectra and (1)H NMR data of the product with that of the free ligand values. The composition (Hg(2+):L=1:1) of the Hg(2+) complex in solution was evaluated by fluorescence titration method. Based on the chelation assisted fluorescence quenching, a highly sensitive spectrofluorometric method was developed for the determination of trace amounts of Hg(2+) in water. The ligand had an excitation and emission maxima at 360 nm and 455 nm, respectively. The fluorescence life times of the ligand and its Hg(2+) complex were 1.54 ns and 0.72 ns respectively. The binding constant of the ligand, L with Hg(2+) was calculated using Benesi-Hildebrand equation and was found to be 7.5630×10(4). The linear range of the method was from 0 to 16 μg L(-1) with a detection limit of 0.056 μg L(-1) for Hg(2+). The quantum yields of the ligand and its Hg(2+) complex were found to be 0.1206 and 0.0757 respectively. Both the ligand and its Hg(2+) complex have been studied computationally (Ab-initio, Hartree Fock method) to get their optimized structure and other related physical parameters, including bond lengths, bond angles, dipole moments, orbital interactions etc. The binding sites of the ligand to the Hg(2+) ion as obtained from the theoretical calculations were well supported by (1)H NMR titration. The interference of foreign ions was negligible. This method has been successfully applied to the determination of mercury(II) in industrial waste water.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2010.11.060DOI Listing

Publication Analysis

Top Keywords

ligand hg2+
24
hg2+ complex
16
hg2+
11
qtof mass
8
mass spectra
8
ftir uv-vis
8
ligand
8
μg l-1
8
method
5
methionine-pyrene hybrid
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!