Although odontogenic infections are often accompanied by pain, little is known about the potential mechanisms mediating this effect. In this study we tested the hypothesis that trigeminal nociceptive neurons are directly sensitized by lipopolysaccharide (LPS) isolated from an endodontic pathogen, Porphyromonas gingivalis. In vitro studies conducted with cultures of rat trigeminal neurons demonstrated that pretreatment with LPS produced a significant increase in the capsaicin-evoked release of calcitonin gene-related peptide (CGRP) when compared with vehicle pretreatment, thus showing sensitization of the capsaicin receptor, TRPV1, by LPS. Furthermore, confocal microscopic examination of human tooth pulp samples showed the colocalization of the LPS receptor (toll-like receptor 4, TLR4) with CGRP-containing nerve fibers. Collectively, these results suggest the direct sensitization of nociceptors by LPS at concentrations found in infected canal systems as one mechanism responsible for the pain associated with bacterial infections.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3032989PMC
http://dx.doi.org/10.1016/j.joen.2007.07.001DOI Listing

Publication Analysis

Top Keywords

porphyromonas gingivalis
8
lps
5
lipopolysaccharide porphyromonas
4
gingivalis sensitizes
4
sensitizes capsaicin-sensitive
4
capsaicin-sensitive nociceptors
4
nociceptors odontogenic
4
odontogenic infections
4
infections accompanied
4
accompanied pain
4

Similar Publications

Dynamin-Related Protein 1 Orchestrates Inflammatory Responses in Periodontal Macrophages via Interaction With Hexokinase 1.

J Clin Periodontol

January 2025

Department of Oral Implantology, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China.

Aim: To explore the potential roles of mitochondrial dysfunction in the initiation of inflammation in periodontal macrophages and to determine the mechanism underlying the involvement of dynamin-related protein 1 (Drp1) in macrophage inflammatory responses through its interaction with hexokinase 1 (HK1).

Materials And Methods: Gingival tissues were collected from patients diagnosed with periodontitis or from healthy volunteers. Drp1 tetramer formation and phosphorylation were analysed using western blot.

View Article and Find Full Text PDF

We aimed to evaluate whether Colocasia antiquorum var. esculenta (CA) mixed with experimental varnish inhibits inflammation and alveolar bone loss in a rat ligature-induced periodontitis model. The minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC) were tested and cell viability of CA were also evaluated.

View Article and Find Full Text PDF

A monoamine oxidase B inhibitor altered gene expression of catalytically active dual-specificity phosphatases in human oral gingival keratinocytes.

Eur Rev Med Pharmacol Sci

December 2024

Department of Oral Biological and Medical Sciences, Faculty of Dentistry, The University of British Columbia, Vancouver, BC, Canada.

Objective: Monoamine oxidase (MAO) inhibitors reduce inflammation in a number of in vitro and in vivo models. This finding led to the development of a novel MAO-B selective inhibitor (RG0216) designed to reduce blood-brain barrier penetration. To elucidate RG0216's regulatory role in inflammation-relevant signaling pathways, we employed a transcriptome analytic approach to identify genes that are differentially regulated by RG0216 and then globally identified which inflammation-relevant biological signaling pathways were altered by this drug.

View Article and Find Full Text PDF

Gut microbiota mediated T cells regulation and autoimmune diseases.

Front Microbiol

December 2024

Laboratory of Anti-allergic Functional Molecules, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China.

Gut microbiota regulates the immune system, the development and progression of autoimmune diseases (AIDs) and overall health. Recent studies have played a crucial part in understanding the specific role of different gut bacterial strains and their metabolites in different AIDs. Microbial signatures in AIDs are revealed by advanced sequencing and metabolomics studies.

View Article and Find Full Text PDF

Structural and functional analysis of the lipoprotein chaperone LolA.

Front Microbiol

December 2024

Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden.

Lipoproteins are crucial for maintaining the structural integrity of bacterial membranes. In Gram-negative bacteria, the localization of lipoprotein (Lol) system facilitates the transport of these proteins from the inner membrane to the outer membrane. In , an ε-proteobacterium, lipoprotein transport differs significantly from the canonical and well-studied system in , particularly due to the absence of LolB and the use of a LolF homodimer instead of the LolCE heterodimer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!