1p36 deletion is the most common terminal deletion syndrome with an estimated occurrence of 1:5000 live births. The deletion is of variable size. It usually involves less than 10 Mb in the 1pter-1p36.23 interval. Variability of the phenotype is partially related to the extent of the deletion. Some children with a 1p36 deletion were reported with obesity and hyperphagia, raising the question of possible phenotypic overlap with Prader-Willi syndrome. Correlation between presence of obesity and the size of the deletion has only been documented in one case. We report a 11-year-old girl with 1p36 deletion and the classical dysmorphological features. In late infancy, she developed an uncontrolled voracious appetite, overweight, truncal obesity and elevated serum transaminases. Liver biopsy disclosed severe steatosis. The hepatocytes contained accumulation of lipofuscins. Lipolysosomes were abnormally numerous and extremely enlarged. These features have not been previously reported in 1p36 deletion. Oligonucleotide-based microarray analysis showed a subtelomeric 2.2 Mb deletion at 1p36.33p36.32. This suggests that this chromosome segment is a critical region for obesity and hyperphagia. The accumulation in the liver with abnormal ultrastructure may be an additional feature of this form of syndromal obesity. 1p36 deletion syndrome should be considered in patients with obesity, hyperphagia and liver fat accumulation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejmg.2010.11.012 | DOI Listing |
Transl Pediatr
October 2024
Department of General Surgery, Children's Hospital of Hebei Province, Shijiazhuang, China.
Background: Segmental chromosome aberrations, defined as presence of aberrations, deletion, or imbalance in the chromosomal arms, have long been considered as a predictor of poor prognosis of patients with neuroblastoma. The objective of this meta-analysis is to quantitively analyze the hazard ratios (HRs) of different whole or segmental chromosome aberrations for overall survival (OS) rate or event-free survival (EFS) rate of patients with neuroblastoma.
Methods: Relevant studies about chromosome, neuroblastoma, predictor, prognosis, and survival published from the inception to April 2023 in the databases of PubMed, Embase, and Web of Science were searched, screened, and reviewed.
Taiwan J Obstet Gynecol
November 2024
Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan.
J Appl Genet
October 2024
Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479, Poznan, Poland.
In the monosomy 1p36 deletion syndrome, the role of DNA methylation in the genomic stability of the 1p36 region remains elusive. We hypothesize that changes in the methylation pattern at the 1p36 breakpoint hotspot region influenced the chromosomal breakage leading to terminal deletions. From the monosomy 1p36 material collection, four cases with 4.
View Article and Find Full Text PDFPLoS One
October 2024
Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
Background: Glioma is a highly heterogeneous and poorly immunogenic malignant tumor, with limited efficacy of immunotherapy. The characteristics of the immunosuppressive tumor microenvironment (TME) are one of the important factors hindering the effectiveness of immunotherapy. Therefore, this study aims to reveal the immune microenvironment (IME) characteristics of glioma and predict different immune subtypes using machine learning methods, providing guidance for immune therapy in glioma.
View Article and Find Full Text PDFAm J Med Genet A
October 2024
Department of Genome Medicine, National Center for Child Health and Development, Tokyo, Japan.
Radio-Tartaglia syndrome (RATARS) (MIM#619312) is a genetic disorder caused by heterozygous truncating variants of SPEN on chromosome 1p36. This syndrome is extremely rare, with only 34 cases reported to date. RATARS is characterized by developmental delay, hypotonia, and intellectual disability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!