AI Article Synopsis

  • Foxp3(+) regulatory T (Treg) cells can switch to a proinflammatory state, but the importance of this change wasn't well understood until now.
  • After vaccination with an antigen and TLR-9 ligand, many Treg cells quickly reprogram into activated T helper cells that are crucial for initiating CD8(+) T cell responses against new antigens.
  • In tumor environments, reprogramming of Treg cells is hindered by the tumor's IDO, leading to ineffective vaccinations; however, inhibiting IDO can restore both Treg reprogramming and the effectiveness of the vaccine.

Article Abstract

Foxp3(+) regulatory T (Treg) cells can undergo reprogramming into a phenotype expressing proinflammatory cytokines. However, the biologic significance of this conversion remains unclear. We show that large numbers of Treg cells undergo rapid reprogramming into activated T helper cells after vaccination with antigen plus Toll-like receptor 9 (TLR-9) ligand. Helper activity from converted Treg cells proved essential during initial priming of CD8(+) T cells to a new cross-presented antigen. Help from Treg cells was dependent on CD40L, and (unlike help from conventional non-Treg CD4(+) cells) did not require preactivation or prior exposure to antigen. In hosts with established tumors, Treg cell reprogramming was suppressed by tumor-induced indoleamine 2,3-dioxygenase (IDO) and vaccination failed because of lack of help. Treg cell reprogramming, vaccine efficacy, and antitumor CD8(+) T cell responses were restored by pharmacologic inhibition of IDO. Reprogrammed Treg cells can thus participate as previously unrecognized drivers of certain early CD8(+) T cell responses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3032429PMC
http://dx.doi.org/10.1016/j.immuni.2010.11.022DOI Listing

Publication Analysis

Top Keywords

treg cells
20
foxp3+ regulatory
8
cells
8
cells undergo
8
help treg
8
treg cell
8
cell reprogramming
8
cd8+ t cell
8
t cell responses
8
treg
7

Similar Publications

During nasal polyp (NP) development, activated T cells differentiate into T helper (Th) 1, Th2, and Th17 cells. Additionally, regulatory T cells (Tregs) that have an immune suppressive function are involved in the pathophysiology of chronic rhinosinusitis (CRS) with NP (CRSwNP). Tregs can act as effector cells that produce inflammatory cytokines, such as interleukin (IL)-17A.

View Article and Find Full Text PDF

The balance between CD8 T cells and regulatory T (Treg) cells in the tumor microenvironment (TME) plays a crucial role in the immune checkpoint inhibition (ICI) therapy in gastric carcinoma (GC). However, related factors leading to the disturbance of TME and resistance to ICI therapy remain unknown. In this study, we applied N6-methyladenosine (m6A) small RNA Epitranscriptomic Microarray and screened out 3'tRF-AlaAGC based on its highest differential expression level and lowest inter-group variance.

View Article and Find Full Text PDF

Mitochondrial DNA (mtDNA) is highly polymorphic, and host mtDNA variation has been associated with altered cancer severity. To determine the basis of this mtDNA-cancer association, we analyzed conplastic mice with the C57BL/6J (B6) nucleus but two naturally occurring mtDNA lineages, and , where mitochondria generate more oxidative phosphorylation (OXPHOS)-derived reactive oxygen species (mROS). In a cardiac transplant model, Foxp3+ T regulatory (Treg) cells supported long-term allograft survival, whereas Treg cells failed to suppress host T effector (Teff) cells, leading to acute rejection.

View Article and Find Full Text PDF

Background: Mounting evidence support the involvement of adaptive immune system in the pathogenesis of Alzheimer's disease (AD). The current study investigated the age-dependent changes in the abundance of B and T cell subtypes in APP/PS1 mice, a commonly used model for AD.

Method: Peripheral blood was collected through cardiac puncture from 6-, 9-, 12-month-old APP/PS1 transgenic (TG) mice (APPsw and PSEN1dE9, n = 8-12) and their wildtype (WT) littermates (C57BL/6J, n = 12-15).

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Northwestern University, Chicago, IL, USA.

Background: Much attention has been paid to the role of the perenchymal brain immune response in Alzheimer's disease (AD). Yet, the peripheral immune system in AD has not been thoroughly studied with modern sequencing methods.

Method: Here, we used a combination of single-cell sequencing strategies, including assay for transposase-accessible chromatin and RNA sequencing, to investigate the epigenetic and transcriptional alterations to the AD peripheral immune system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!