A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Aerobic granulation for nitrogen removal via nitrite in a sequencing batch reactor and the emission of nitrous oxide. | LitMetric

Aerobic granulation for nitrogen removal via nitrite in a sequencing batch reactor and the emission of nitrous oxide.

Bioresour Technol

Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, China.

Published: February 2011

In this study, the granulation of nitrifying-denitrifying via nitrite process in a sequencing batch reactor (SBR) as well as N(2)O emission patterns was investigated. After 60 days of operation, 0.8 mm granules were obtained, and partial nitrification was achieved after NH(4)(+)-N was raised to 350 mg/L. Fluorescence In-Situ Hybridization (FISH) analysis indicated that a fairly large proportion of ammonia-oxidizing bacteria (AOB) was close to the surface but nitrite-oxidizing bacteria (NOB) were rarely found. Batch experiments showed that 64.0% of NH(4)(+)-N in influent was transformed into NO(2)(-)-N, which showed the granules had excellent partial nitrification ability. Inhibition of free ammonia (FA) and limited DO diffusion within granules may contribute to the development and stabilization of partial nitrification. This process did not simultaneously lead to increased N(2)O production. N(2)O emissions at the anoxic and aerobic phases were 0.06 and 13.13 mg N(2)O/cycle, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2010.11.081DOI Listing

Publication Analysis

Top Keywords

partial nitrification
12
sequencing batch
8
batch reactor
8
aerobic granulation
4
granulation nitrogen
4
nitrogen removal
4
removal nitrite
4
nitrite sequencing
4
reactor emission
4
emission nitrous
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!