The inositol pyrophosphate IP7 (5-diphosphoinositolpentakisphosphate), formed by a family of three inositol hexakisphosphate kinases (IP6Ks), modulates diverse cellular activities. We now report that IP7 is a physiologic inhibitor of Akt, a serine/threonine kinase that regulates glucose homeostasis and protein translation, respectively, via the GSK3β and mTOR pathways. Thus, Akt and mTOR signaling are dramatically augmented and GSK3β signaling reduced in skeletal muscle, white adipose tissue, and liver of mice with targeted deletion of IP6K1. IP7 affects this pathway by potently inhibiting the PDK1 phosphorylation of Akt, preventing its activation and thereby affecting insulin signaling. IP6K1 knockout mice manifest insulin sensitivity and are resistant to obesity elicited by high-fat diet or aging. Inhibition of IP6K1 may afford a therapeutic approach to obesity and diabetes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3052691PMC
http://dx.doi.org/10.1016/j.cell.2010.11.032DOI Listing

Publication Analysis

Top Keywords

insulin sensitivity
8
inositol pyrophosphates
4
pyrophosphates inhibit
4
akt
4
inhibit akt
4
signaling
4
akt signaling
4
signaling regulating
4
regulating insulin
4
sensitivity weight
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!