Background: It has been suggested that omega-3 polyunsaturated fatty acids (n-3 PUFAs) may prevent the development of atrial fibrillation (AF).

Objective: The purpose of this study was to evaluate the impact of these agents on development of the AF substrate in heart failure (HF).

Methods: In this study, HF was induced by intracoronary doxorubicin infusions. Twenty-one sheep [7 with n-3 PUFAs treated HF (HF-PUFA), 7 with olive oil-treated HF controls (HF-CTL), 7 controls (CTL)] were studied. Open chest electrophysiologic study was performed with assessment of biatrial effective refractory period (ERP) and conduction. Cardiac function was monitored by magnetic resonance imaging. Atrial n-3 PUFAs levels were quantified using chromatography. Structural analysis was also performed.

Results: Atrial n-3 PUFAs levels were twofold to threefold higher in the HF-PUFA group. n-3 PUFAs prevented the development of HF-related left atrial enlargement (P = .001) but not left ventricular/atrial dysfunction. Atrial ERP was significantly lower in the HF-PUFA group (P <.001), but ERP heterogeneity was unchanged. In addition, n-3 PUFAs suppressed atrial conduction abnormalities seen in HF of prolonged P-wave duration (P = .01) and slowed (P <.001) and heterogeneous (P <.05) conduction. The duration of induced AF episodes in HF-PUFA was shorter (P = .02), although AF inducibility was unaltered (P = NS). A 20% reduction of atrial interstitial fibrosis was seen in the HF-PUFA group (P <.05).

Conclusion: In this ovine HF study, chronic n-3 PUFAs use protected against adverse atrial remodeling by preventing atrial enlargement, fibrosis, and conduction abnormalities leading to shorter AF episodes despite lower ERP.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.hrthm.2010.12.009DOI Listing

Publication Analysis

Top Keywords

n-3 pufas
20
polyunsaturated fatty
8
fatty acids
8
heart failure
8
atrial n-3
8
pufas levels
8
hf-pufa group
8
atrial
6
n-3
6
pufas
5

Similar Publications

Introduction: We performed a systematic review and meta-analysis to investigate the effects of combining omega-3 polyunsaturated fatty acids (n-3 PUFAs) supplementation with exercise training, as compared to exercise training alone, on body composition measures including body weight, body mass index (BMI), fat mass, body fat percentage, and lean body mass. Additionally, we determined the effects on cardiometabolic health outcomes including lipid profiles, blood pressure, glycemic markers, and inflammatory markers.

Method: Three primary electronic databases including PubMed, Web of Science, and Scopus were searched from inception to April 5, 2023 to identify original articles comparing n-3 PUFA supplementation plus exercise training versus exercise training alone, that investigated at least one of the following outcomes: fat mass, body fat percentage, lean body mass, triglycerides (TG), total cholesterol (TC), low-density lipoprotein (LDL), high-density lipoprotein (HDL), systolic (SBP) and diastolic (DBP) blood pressures, fasting glucose and insulin, interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α).

View Article and Find Full Text PDF

This study aimed to investigate the impact of dietary soybean oil and probiotics on goat meat quality, total conjugated linoleic acids (TCLA) concentration, and nutritional quality indicators of goats. Thirty-six male crossbred goats (Anglo-Nubian♂× Thai native♀), weighing 18.3 ± 2.

View Article and Find Full Text PDF

To concentrate omega-3 fatty acids (-3) in fish oil (FO), olein and super olein fraction (OF) of FO were produced by winterization. For this purpose, FO was slowly cooled to -50°C (24 h), the mixture of crystallized and non-crystallized phases was separated, filtrate was coded as OF (yield 32%), 35% of OF was kept for storage study and analytical purpose, remaining 65% was further slowly cooled down to -75°C (24 h) and filtered, filtrate was coded as super olein (SF, yield 23%). GC-MS analysis showed that unsaturated fatty acids increased due to successive winterization.

View Article and Find Full Text PDF

The Optimal Dosage and Duration of Omega-3 Polyunsaturated Fatty Acid Supplementation in Heart Failure Management: Evidence from a Network Meta-Analysis.

Adv Nutr

January 2025

Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Department of Psychiatry & Mind-Body Interface Laboratory (MBI-Lab), China Medical University Hospital, Taichung, Taiwan; College of Medicine, China Medical University, Taichung, Taiwan; An-Nan Hospital, China Medical University, Tainan, Taiwan. Electronic address:

Heart failure is a progressive condition associated with a high mortality rate. Despite advancements in treatment, many patients continue to experience less-than-ideal outcomes. Omega-3 polyunsaturated fatty acids (n-3 PUFAs) have been studied as a potential supplementary therapy for heart failure, but the optimal dosage and duration of supplementation remain unclear.

View Article and Find Full Text PDF

The synthesis of n-3 and n-6 polyunsaturated acids (PUFAs) is associated with physiological functions in mammals, being catalyzed by Δ-5D and Δ-6D desaturases and elongases Elovl-2 and Elovl-5. In this context, we aimed to study the chief kinetic features of PUFA liver anabolism, looking upon (i) the time-dependency for the specific activity of Δ-6D, Δ-5D, Elovl2, Elovl2/5 and Elovl5, using n-3 and n-6 precursors between 0 and 240 min ex vivo in mouse liver.; and (ii) the specific activity-substrate (α-linolenic acid; ALA) concentration responses of Δ-6D in the absence and presence of linoleic acid (LA), arachidonic acid (ARA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), an enzyme regarded as the rate-limiting step in PUFA anabolism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!