Selenium is an essential trace nutrient that has a narrow exposure window between its beneficial and detrimental effects. We investigated how selenium affected the development, fertility, and cholinergic signaling of the nematode, Caenorhabditis elegans. Our results showed that selenite supplementation at 0.01 and 0.05 μM accelerated development and increased the brood size, while the addition of 20 μM selenite retarded the developmental rate and decreased the brood size. We also showed that the 0.01 μM selenite-pretreated nematodes were more resistant to paralysis induced by an acetylcholinesterase inhibitor, aldicarb, and a nicotinic acetylcholine receptor agonist, levamisole, compared to untreated worms. In contrast, 20 μM selenite-pretreated animals were more sensitive to aldicarb- and levamisole-induced paralysis compared to untreated worms. We measured the internal selenium in supplemented worms using inductively coupled plasma atomic emission spectroscopy, and the data obtained suggested that selenite added to growth medium was taken up by the worms. Taken together, these results suggest that selenite exerts both ameliorative and toxic effects on C.elegans, depending on the amount. Our investigations here thus reinforce our understanding of the ameliorative and toxic effects of selenium on development, reproduction, and cholinergic signaling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.fct.2010.12.002 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!