Objective: To investigate whether pathologically similar astrocytomas in adults and children may also show metabolic similarities in proton magnetic resonance spectroscopy ((1)H-MRS) and whether the MRS data could help to differentiate between low and high grade gliomas for the different groups.

Material And Methods: Twelve children (5 WHO II astrocytomas, 7 WHO III astrocytomas) and 37 adults (21 WHO II astrocytomas, 16 WHO III astrocytomas) were included in this study. MR spectroscopic data were evaluated retrospectively using normalized measures of total choline (tCho), N-acetyl-aspartate (NAA) and total creatine (tCr). These metabolites were used to differentiate between WHO II and WHO III astrocytomas in children and adults. Histopathological grading was performed using WHO criteria. (1)H-MRS was carried out prior to the commencement of any treatment. Signal intensities of tCho, NAA and tCr were normalized to their values in contralateral brain tissue. The resulting concentration ratios were then used to calculate the change in the intratumoural ratio of NAA to tCho. A Mann-Whitney U-Test was performed to evaluate differences within the respective groups.

Results: In both groups, loss of NAA and increase of tCho were more pronounced in WHO III than in WHO II astrocytoma. The best discriminator to differentiate between low and high grade gliomas was found to be the ratio of NAA/tCho (p < 0.01).

Conclusion: The normalized metabolite signal intensities ratio NAA to tCho is the most accurate in differentiating between low and high grade astrocytomas in both children and adults.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejpn.2010.11.003DOI Listing

Publication Analysis

Top Keywords

low high
12
high grade
12
iii astrocytomas
12
astrocytomas
8
grade astrocytomas
8
astrocytomas adults
8
differentiate low
8
grade gliomas
8
astrocytomas iii
8
astrocytomas children
8

Similar Publications

The Ataxia-telangiectasia mutated (ATM) is the most important gene for repairing the DNA in Myelodysplastic Neoplasm.

DNA Repair (Amst)

January 2025

Cancer Cytogenomic Laboratory, Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil; Post-Graduate Program in Medical Science, Federal University of Ceara, Fortaleza, Ceara, Brazil; Post-Graduate Program of Pathology, Federal University of Ceara, Fortaleza, Ceara, Fortaleza, Ceara, Brazil; Post-Graduate Program of Translational Medicine, Federal University of Ceara, Fortaleza, Ceara, Brazil.

Myelodysplastic Neoplasm (MDS) is a cancer associated with aging, often leading to acute myeloid leukemia (AML). One of its hallmarks is hypermethylation, particularly in genes responsible for DNA repair. This study aimed to evaluate the methylation and mutation status of DNA repair genes (single-strand - XPA, XPC, XPG, CSA, CSB and double-strand - ATM, BRCA1, BRCA2, LIG4, RAD51) in MDS across three patient cohorts (Cohort A-56, Cohort B-100, Cohort C-76), using methods like pyrosequencing, real-time PCR, immunohistochemistry, and mutation screening.

View Article and Find Full Text PDF

Purpose: To develop and validate an MRI-based model for predicting postoperative early (≤2 years) recurrence-free survival (RFS) in patients receiving upfront surgical resection (SR) for beyond Milan hepatocellular carcinoma (HCC) and to assess the model's performance in separate patients receiving neoadjuvant therapy for similar-stage tumors.

Method: This single-center retrospective study included consecutive patients with resectable BCLC A/B beyond Milan HCC undergoing upfront SR or neoadjuvant therapy. All images were independently evaluated by three blinded radiologists.

View Article and Find Full Text PDF

Two-dimensional Transition Metal Dichalcogenides (2D TMDs) have garnered significant attention in the field of materials science due to their remarkable electronic and optoelectronic properties, including high carrier mobility and tunable band gaps. Despite the extensive research on various TMDs, there remains a notable gap in understanding the synthesis techniques and their implications for the practical application of monolayer tungsten disulfide (WS2) in optoelectronic devices. This gap is critical, as the successful integration of WS2 into commercial technologies hinges on the development of reliable synthesis methods that ensure high quality and uniformity of the material.

View Article and Find Full Text PDF

Photoacoustic tomography (PAT) is a non-destructive, non-ionizing, and rapidly expanding hybrid biomedical imaging technique, yet it faces challenges in obtaining clear images due to limited data from detectors or angles. As a result, the methodology suffers from significant streak artifacts and low-quality images. The integration of deep learning (DL), specifically convolutional neural networks (CNNs), has recently demonstrated powerful performance in various fields of PAT.

View Article and Find Full Text PDF

An exploratory survey assessing the determinants of heat stress and heat strain in the Canadian mining industry from the worker's perspective.

J Occup Environ Hyg

January 2025

Human and Environmental Physiology Research Unit, School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada.

With mines extending deeper and rising surface temperatures, workers are exposed to hotter environments. This study aimed to characterize heat stress and strain in the Canadian mining industry and evaluate the utility of the Heat Strain Score Index (HSSI), combined with additional self-reported adverse health outcomes. An exploratory web-based survey was conducted among workers ( = 119) in the Canadian mining industry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!