Epitope H contains an O-linked N-acetylglucosamine (O-GlcNAc) residue in a specific conformation and/or environment recognized by mouse IgM monoclonal antibody H (mabH). Epitope H is present in several types of cells and in several polypeptides outside the CNS. Previous results have shown that in the adult human brains, epitope H is confined mostly to a minority of fibrous astrocytes, and it is greatly upregulated in the reactive astrocytes. Post-translational modification with O-GlcNAc occurs on many proteins involved in several cell processes, such as cell cycle progression, apoptosis, proteasome degradation pathways, and modulation of cellular function in response to nutrition and stress. Hypoxia is one of the major causes of cellular stress. Therefore, in this study, we used the mAbH and the indirect immunoperoxidase method to investigate the expression of epitope H in ependymal cells in brains of persons who died with signs of hypoxic encephalopathy. The results of the present study showed that practically all ependymal cells showed cytoplasmic staining for epitope H in supranuclear cytoplasm in the brain of two premature neonates and in ten infants who died with signs of hypoxic encephalopathy. However, the overwhelming majority of ependymal cells of the nine human embryos taken from legal abortions, ranging from 26 days until 13 weeks of gestational age, and of the ten infants' brains without any sign of hypoxic encephalopathy remained negative. Only occasionally did the ependymal cells show weak cytoplasmic staining in some foci. In addition, the reactive astrocytes in the hypoxic brains showed strong cytoplasmic staining, confirming previous results.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.prp.2010.10.008DOI Listing

Publication Analysis

Top Keywords

ependymal cells
20
hypoxic encephalopathy
12
cytoplasmic staining
12
o-linked n-acetylglucosamine
8
reactive astrocytes
8
died signs
8
signs hypoxic
8
epitope
6
cells
6
ependymal
5

Similar Publications

Motile cilia modulate neuronal and astroglial activity in the zebrafish larval brain.

Cell Rep

January 2025

Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Erling Skjalgssons Gate 1, 7491 Trondheim, Norway; Kavli Institute for Systems Neuroscience and Centre for Algorithms in the Cortex, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7030 Trondheim, Norway. Electronic address:

The brain uses a specialized system to transport cerebrospinal fluid (CSF), consisting of interconnected ventricles lined by motile ciliated ependymal cells. These cells act jointly with CSF secretion and cardiac pressure gradients to regulate CSF dynamics. To date, the link between cilia-mediated CSF flow and brain function is poorly understood.

View Article and Find Full Text PDF

Objective: Ependymomas, rare neuroglial tumors originating from ependymal cells, can occur in the CNS and typically affect the brain's ventricles or spinal cord. Prognosis is influenced by tumor grade, location, resection extent, and preoperative Karnofsky Performance Status Scale (KPSS) scores. This study evaluates clinical features, treatment outcomes, and factors affecting prognosis in patients with intracranial ependymomas.

View Article and Find Full Text PDF

Various mature tissue-resident cells exhibit progenitor characteristics following injury. However, the existence of endogenous stem cells with multiple lineage potentials in the adult spinal cord remains a compelling area of research. In this study, we present a cross-species investigation that extends from development to injury.

View Article and Find Full Text PDF
Article Synopsis
  • Biological aging involves a gradual loss of homeostasis in molecular and cellular functions, particularly in the brain, which contains diverse cell types that differ in their aging resilience.
  • This study offers an extensive single-cell RNA sequencing dataset of approximately 1.2 million transcriptomes from brain cells in young and aged mice, identifying 847 cell clusters and 14 age-biased clusters predominantly involving glial types.
  • Key findings reveal specific gene expression changes with aging, including decreased neuronal function genes and increased immune-related genes, particularly in cells around the third ventricle of the hypothalamus, suggesting its critical role in the aging process of the mouse brain.
View Article and Find Full Text PDF

Addressing the Effect of Exercise on Glial Cells: Focus on Ependymal Cells.

J Integr Neurosci

December 2024

Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Science, School of Medicine, University of Catania, 95123 Catania, Italy.

A growing body of research highlights the positive impact of regular physical activity on improving physical and mental health. On the other hand, physical inactivity is one of the leading risk factors for noncommunicable diseases and death worldwide. Exercise profoundly impacts various body districts, including the central nervous system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!