Intake of high doses of vitamin C has known to modulate sulfoconjugation of drugs in the intestine, but the underlying mechanisms for this effect remain to be elucidated. In the present study, we investigated the effects of vitamin C (l-ascorbic acid (AA)) on sulfation of 1-naphthol using Caco-2 cells, a model of human intestinal cells. We found that high dose of AA inhibited the accumulation of 1-naphthyl sulfate in Caco-2 culture medium within 24h in a dose-dependent manner (IC(50)=42 mM). Dehydroascorbic acid (DA), an oxidized form of AA, showed no inhibition. AA did not inhibit the in vitro sulfotransferase (SULT) activity toward 1-naphthol, whereas it reduced the expression of genes belonging to SULT1A family, SULT1A1 and SULT1A3. DA showed no effect on SULT1A gene expression. Consistent with the reduction in gene expression, AA reduced the cytosolic SULT activity towards 1-naphthol in the AA-treated Caco-2 cells. In addition, cAMP exerted an additive effect on AA-mediated repression of SULT1A gene expression. Our results suggest that megadose AA suppresses sulfoconjugation in the intestine mainly by downregulating the expression of SULT1A genes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tiv.2010.12.002DOI Listing

Publication Analysis

Top Keywords

gene expression
12
suppresses sulfoconjugation
8
caco-2 cells
8
sult activity
8
activity 1-naphthol
8
sult1a gene
8
expression
5
megadose vitamin
4
vitamin suppresses
4
sulfoconjugation human
4

Similar Publications

Barley (Hordeum vulgare L.) is an important cereal crop used in animal feed, beer brewing, and food production. Waterlogging stress is one of the prominent abiotic stresses that has a significant impact on the yield and quality of barley.

View Article and Find Full Text PDF

Exploring the dual roles of sec-dependent effectors from Candidatus Liberibacter asiaticus in immunity of citrus plants.

Plant Cell Rep

January 2025

MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510631, China.

The three SDEs of CLas were expressed in citrus leaves by AuNPs-PEI mediated transient expression system, and promoted the proliferation of CLas and inhibited citrus immunity. Huanglongbing (HLB) is the most severe bacterial disease of citrus caused by Candidatus Liberibacter asiaticus (CLas). CLas suppress host immune responses and promote infection by sec-dependent effectors (SDEs), thus insight into HLB pathogenesis is urgently needed to develop effective management strategies.

View Article and Find Full Text PDF

This study aims to investigate the expression of seven cancer testis antigens (MAGE-A1, MAGE-A4, MAGE-A10, MAGE-A11, PRAME, NY-ESO-1 and KK-LC-1) in pan squamous cell carcinoma and their prognostic value, thus assessing the potential of these CTAs as immunotherapeutic targets. The protein expression of these CTAs was evaluated by immunohistochemistry in 60 lung squamous cell carcinoma (LUSC), 62 esophageal squamous cell carcinoma (ESCA) and 62 head and neck squamous cell carcinoma (HNSC). The relationship between CTAs expression and progression-free survival (PFS) was assessed.

View Article and Find Full Text PDF

An involvement of a new zinc finger protein PbrZFP719 into pear self-incompatibility reaction.

Plant Cell Rep

January 2025

State Key Laboratory of Crop Genetics and Germplasm Enhancement, Saya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 211800, China.

This study indicated that the CCHC-type zinc finger protein PbrZFP719 involves into self-incompatibility by affecting the levels of reactive oxygen species and cellulose content at the tips of pollen tubes. S-RNase-based self-incompatibility (SI) facilitates cross-pollination and prevents self-pollination, which in turn increases the costs associated with artificial pollination in fruit crops. Self S-RNase exerts its inhibitory effects on pollen tube growth by altering cell structures and components, including reactive oxygen species (ROS) level and cellulose content.

View Article and Find Full Text PDF

Tissue nanotransfection-based endothelial PLCγ2-targeted epigenetic gene editing in vivo rescues perfusion and diabetic ischemic wound healing.

Mol Ther

January 2025

Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, United States; Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN 46202, United States. Electronic address:

Diabetic wounds are complicated by underlying peripheral vasculopathy. Reliance on vascular endothelial growth factor (VEGF) therapy to improve perfusion makes logical sense, yet clinical study outcomes on rescuing diabetic wound vascularization have yielded disappointing results. Our previous work has identified that low endothelial phospholipase Cγ2 (PLCγ2) expression hinders the therapeutic effect of VEGF on the diabetic ischemic limb.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!