Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Tonal responses of neurons in the primary auditory cortex are a function of frequency, intensity and ear of stimulation. These responses occasionally display suppression. This review discusses how excitatory and inhibitory synaptic inputs interact to form suppressive responses and how changes in stimulus attributes affect the magnitude and timing of those responses. Stimulation at the characteristic frequency evokes a stereotyped sequence of depolarization (excitatory) and then hyperpolarization (inhibitory), as predicted from the canonical circuitry. Some neurons stimulated at higher sound intensities display a prominent increase in the magnitude of hyperpolarization or a decrease in its latency, both enabling counteraction with the preceding excitation. These interactions, in part, underlie the non-monotonic suppression. Furthermore, monaural non-dominant ear stimulation elicits such a powerful hyperpolarization as to cancel out the depolarization elicited at dominant ear stimulation, suggesting a linear mechanism for the binaural suppression. Alternatively, it elicits a depolarization almost equal in magnitude and time course to that elicited at binaural stimulation, suggesting a nonlinear interaction responsible for the suppression. Laminar differences are also noted for these inhibitory interactions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neubiorev.2010.11.009 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!