The present study aims to evaluate Red HE3B degrading potential of developed microbial consortium SDS using two bacterial cultures viz. Providencia sp. SDS (PS) and Pseudomonas aeuroginosa strain BCH (PA) originally isolated from dye contaminated soil. Consortium was found to be much faster for decolorization and degradation of Red HE3B compared to the individual bacterial strain. The intensive metabolic activity of these strains led to 100% decolorization of Red HE3B (50 mg l(-1)) with in 1h. Significant induction of various dye decolorizing enzymes viz. veratryl alcohol oxidase, laccase, azoreductase and DCIP reductase compared to control, point out towards their involvement in overall decolorization and degradation process. Analytical studies like HPLC, FTIR and GC-MS were used to scrutinize the biodegradation process. Toxicological studies before and after microbial treatment was studied with respect to cytotoxicity, genotoxicity, oxidative stress, antioxidant enzyme status, protein oxidation and lipid peroxidation analysis using root cells of Allium cepa. Toxicity analysis with A. cepa signifies that dye Red HE3B exerts oxidative stress and subsequently toxic effect on the root cells where as biodegradation metabolites of the dye are relatively less toxic in nature. Phytotoxicity studies also indicated that microbial treatment favors detoxification of Red HE3B.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2010.11.049DOI Listing

Publication Analysis

Top Keywords

red he3b
20
oxidative stress
12
cytotoxicity genotoxicity
8
genotoxicity oxidative
8
decolorization degradation
8
microbial treatment
8
root cells
8
dye
6
red
5
he3b
5

Similar Publications

Construction of a multipurpose yeast consortium suitable for lipid production, textile dye/effluent removal and lignin valorization is critical for both biorefinery and bioremediation. Therefore, a novel oleaginous consortium, designated as OYC-Y.BC.

View Article and Find Full Text PDF

The present study aims to evaluate Red HE3B degrading potential of developed microbial consortium SDS using two bacterial cultures viz. Providencia sp. SDS (PS) and Pseudomonas aeuroginosa strain BCH (PA) originally isolated from dye contaminated soil.

View Article and Find Full Text PDF

Communal action of microbial cultures for Red HE3B degradation.

J Hazard Mater

September 2010

Department of Microbiology, Shivaji University, Kolhapur, India.

The consortium PMB11 consisting of three bacterial species, originally isolated from dye contaminated soil was identified as Bacillus odysseyi SUK3, Morganella morganii SUK5 and Proteus sp. SUK7. The consortium possessed the ability to decolorize various textile dyes as well as mixtures of dyes.

View Article and Find Full Text PDF

Rhizobium radiobacter MTCC 8161 completely decolorized methyl violet (10 mg l(-1)) within 8 h both at static and shaking conditions. The decolorization time increased with increasing dye concentration. The effect of different carbon and nitrogen sources on the decolorization of methyl violet was studied.

View Article and Find Full Text PDF

To improve the selectivity of glucose-6-phosphate dehydrogenase (G6PDH) extraction by an aqueous two-phase system, a simple and inexpensive affinity aqueous two-phase system using unbound reactive triazine dyes as ligands was introduced. In a polyethylene glycol (PEG)/hydroxypropyl starch (PES) system, the unbound free triazine dyes, Cibacron Blue F3GA and Procion Red HE3B, partitioned unevenly in the top PEG-rich phase and thus showed an affinity effect on G6PDH, but no influence on hexokinase. The various parameters investigated were pH of the system, buffers, molecular weight of PEG, and ligand type and concentration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!