Background: The TMPRSS2:ERG fusion is both prevalent and unique to prostate cancer (PCa) and has great potential for noninvasive diagnosis of PCa in bodily fluids.

Objectives: To evaluate the specificity and sensitivity of the TMPRSS2:ERG fusion in urine from diverse clinical contexts and to explore potential clinical applications.

Design, Setting, And Participants: A total of 101 subjects were enrolled in 2008 from urologic oncology clinics to form three study groups: 44 PCa free, 46 confirmed PCa, and 11 negative prostate biopsies. The PCa-free group included females, healthy young men, and post-radical prostatectomy (RP) patients. The confirmed PCa group was composed of patients under active surveillance, scheduled for treatment, or with metastatic disease.

Measurements: Urine was collected after attentive digital rectal exam (DRE) and coded to blind group allocation for laboratory test. RNA from urine sediments was analyzed using a panel of four TMPRSS2:ERG fusion markers with quantitative polymerase chain reaction (qPCR).

Results And Limitations: Our fusion markers demonstrated very high technical specificity and sensitivity for detecting a single fusion-positive cancer cell (VCaP) in the presence of at least 3000 cells in urine sediments. In clinical analysis, there were no fusion-positive samples in the PCa-free group (0 of 44 samples), while there were 16 of 46 (34.8%) fusion-positive samples in the confirmed PCa group. The fusion incidence varied significantly among the three PCa subgroups. The clinical sensitivity increased to 45.4% in cancer patients prior to treatments. The fusion markers were detected in 2 of 11 (18.2%) biopsy-negative patients, suggesting potentially false negative biopsies. This study is not prospective and is limited in sample sizes.

Conclusions: Our novel panel of TMPRSS2:ERG fusion markers provided a very specific and sensitive tool for urine-based detection of PCa. Theses markers can potentially be used to diagnose patients with PCa who have negative biopsies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.eururo.2010.11.026DOI Listing

Publication Analysis

Top Keywords

tmprss2erg fusion
20
fusion markers
16
panel tmprss2erg
12
specificity sensitivity
12
confirmed pca
12
pca
9
fusion
8
prostate cancer
8
pca negative
8
pca-free group
8

Similar Publications

Chromosomal rearrangements and recurrent gene fusions were previously presumed to be the primary oncogenic mechanisms of hematological malignancies. However, the discovery of gene fusions in different cancers has opened new horizons to comprehensively investigate how cell type-specific fusion oncoproteins modulate signaling cascades. Prostate cancer (PCa) is a multifaceted and therapeutically challenging disease, and functional genomics have helped us develop a better understanding of the mechanisms underlying prostate carcinogenesis, castration-resistant PCa, and metastasis.

View Article and Find Full Text PDF

In the ever-evolving landscape of oncology, the battle against prostate cancer (PCa) stands at a transformative juncture, propelled by the integration of molecular diagnostics into traditional cytopathological frameworks. This synthesis not only heralds a new epoch of precision medicine but also significantly enhances our understanding of the disease's genetic intricacies. Our comprehensive review navigates through the latest advancements in molecular biomarkers and their detection technologies, illuminating the potential these innovations hold for the clinical realm.

View Article and Find Full Text PDF

Higher levels of aneuploidy, characterized by imbalanced chromosome numbers, are associated with lethal progression in prostate cancer. However, how aneuploidy contributes to prostate cancer aggressiveness remains poorly understood. In this study, we assessed in patients which genes on chromosome 8q, one of the most frequently gained chromosome arms in prostate tumors, were most strongly associated with long-term risk of cancer progression to metastases and death from prostate cancer (lethal disease) in 403 patients and found the strongest candidate was cohesin subunit gene, , with an odds ratio of 3.

View Article and Find Full Text PDF

Prostate cancer (PC) is the most frequently diagnosed cancer and second leading cause of cancer-related deaths in men. It is heterogeneous, as is evident from the wide spectrum of therapeutic approaches. Most patients with PC are initially responsive to androgen deprivation therapy; however, the majority of cases are either hormone-sensitive PC or castration-resistant PC.

View Article and Find Full Text PDF

ProBio is the first outcome-adaptive platform trial in prostate cancer utilizing a Bayesian framework to evaluate efficacy within predefined biomarker signatures across systemic treatments. Prospective circulating tumor DNA and germline DNA analysis was performed in patients with metastatic castration-resistant prostate cancer before randomization to androgen receptor pathway inhibitors (ARPIs), taxanes or a physician's choice control arm. The primary endpoint was the time to no longer clinically benefitting (NLCB).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!