Glial cell line-derived neurotrophic factor (GDNF) supports the viability of midbrain dopamine (DA) neurons that degenerate in Parkinson's disease. Middle-aged, 12 month old, Gdnf heterozygous (Gdnf(+/-)) mice have diminished spontaneous locomotor activity and enhanced synaptosomal DA uptake compared with wild type mice. In this study, dopamine transporter (DAT) function in middle-aged, 12 month old Gdnf(+/-) mice was more thoroughly investigated using in vivo electrochemistry. Gdnf(+/-) mice injected with the DAT inhibitor, nomifensine, exhibited significantly more locomotor activity than wild type mice. In vivo electrochemistry with carbon fiber microelectrodes demonstrated enhanced clearance of DA in the striatum of Gdnf(+/-) mice, suggesting greater surface expression of DAT than in wild type littermates. Additionally, 12 month old Gdnf(+/-) mice expressed greater D(2) receptor mRNA and protein in the striatum than wild type mice. Neurochemical analyses of striatal tissue samples indicated significant reductions in DA and a faster DA metabolic rate in Gdnf(+/-) mice than in wild type mice. Altogether, these data support an important role for GDNF in the regulation of uptake, synthesis, and metabolism of DA during aging.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3117013 | PMC |
http://dx.doi.org/10.1016/j.neurobiolaging.2010.10.013 | DOI Listing |
Parkinsons Dis
December 2024
School of Medicine, Henan University of Chinese Medicine, Zhengzhou, China.
Cinnamaldehyde (CA), the primary bioactive compound in cinnamon ( Presl, Lauraceae, ), holds potential therapeutic benefits for Parkinson's disease (PD). To scrutinize the impact and mechanisms of CA on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD, male C57BL/6 mice were randomly allocated to CA (150, 300, and 600 mg/kg), model, Madopar, and control group ( = 12). The Open Field, Pole-jump, and Rotarod experiments assessed exercise capacity and anxiety levels.
View Article and Find Full Text PDFArch Toxicol
December 2024
Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
Exposure to diesel exhaust is associated with increased risk of cardiovascular and lung disease. Substituting petroleum diesel with renewable diesel can alter emission properties but the potential health effects remain unclear. This study aimed to explore toxicity and underlying mechanisms of diesel exhaust from renewable fuels.
View Article and Find Full Text PDFNat Commun
December 2024
Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
Growth differentiation factor 15, GDF15, and glucagon-like peptide-1 (GLP-1) analogues act through brainstem neurons that co-localise their receptors, GDNF-family receptor α-like (GFRAL) and GLP1R, to reduce food intake and body weight. However, their use as clinical treatments is partially hampered since both can also induce sickness-like behaviours, including aversion, that are mediated through a well-characterised pathway via the exterolateral parabrachial nucleus. Here, in mice, we describe a separate pathway downstream of GFRAL/GLP1R neurons that involves a distinct population of brain-derived neurotrophic factor (BDNF) cells in the medial nucleus of the tractus solitarius.
View Article and Find Full Text PDFBrain Behav Immun
December 2024
Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy; IRCCS Neuromed, Pozzilli, Italy. Electronic address:
Weight loss is a common early sign in amyotrophic lateral sclerosis (ALS) patients and negatively correlates with survival. In different cancers and metabolic disorders, high levels of serum growth differentiation factor 15 (GDF15) contribute to a decrease of food intake and body weight, acting through GDNF family receptor alpha-like (GFRAL). Here we report that GDF15 is highly expressed in the peripheral blood of ALS patients and in the hSOD1 mouse model and that GFRAL is upregulated in the brainstem of hSOD1 mice.
View Article and Find Full Text PDFElife
December 2024
Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, United States.
Two major ligand-receptor signaling axes - endothelin Edn3 and its receptor Ednrb, and glial-derived neurotrophic factor (GDNF) and its receptor Ret - are required for migration of enteric nervous system (ENS) progenitors to the hindgut. Mutations in either component cause colonic aganglionosis, also called Hirschsprung disease. Here, we have used Wnt1Cre and Pax2Cre in mice to show that these driver lines label distinct ENS lineages during progenitor migration and in their terminal hindgut fates.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!