Sequence-dependent histone variant positioning signatures.

BMC Genomics

School of Knowledge Science, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa, Japan.

Published: December 2010

Background: Nucleosome, the fundamental unit of chromatin, is formed by wrapping nearly 147bp of DNA around an octamer of histone proteins. This histone core has many variants that are different from each other by their biochemical compositions as well as biological functions. Although the deposition of histone variants onto chromatin has been implicated in many important biological processes, such as transcription and replication, the mechanisms of how they are deposited on target sites are still obscure.

Results: By analyzing genomic sequences of nucleosomes bearing different histone variants from human, including H2A.Z, H3.3 and both (H3.3/H2A.Z, so-called double variant histones), we found that genomic sequence contributes in part to determining target sites for different histone variants. Moreover, dinucleotides CA/TG are remarkably important in distinguishing target sites of H2A.Z-only nucleosomes with those of H3.3-containing (both H3.3-only and double variant) nucleosomes.

Conclusions: There exists a DNA-related mechanism regulating the deposition of different histone variants onto chromatin and biological outcomes thereof. This provides additional insights into epigenetic regulatory mechanisms of many important cellular processes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3005914PMC
http://dx.doi.org/10.1186/1471-2164-11-S4-S3DOI Listing

Publication Analysis

Top Keywords

histone variants
16
target sites
12
deposition histone
8
variants chromatin
8
double variant
8
histone
6
variants
5
sequence-dependent histone
4
histone variant
4
variant positioning
4

Similar Publications

Prostate cancer is a common malignancy that in 5%-30% leads to treatment-resistant and highly aggressive disease. Metastasis-potential and treatment-resistance is thought to rely on increased plasticity of the cancer cells-a mechanism whereby cancer cells alter their identity to adapt to changing environments or therapeutic pressures to create cellular heterogeneity. To understand the molecular basis of this plasticity, genomic studies have uncovered genetic variants to capture clonal heterogeneity of primary tumors and metastases.

View Article and Find Full Text PDF

High-resolution analysis of human centromeric chromatin.

Life Sci Alliance

April 2025

National Cancer Institute, Center for Cancer Research, Laboratory of Receptor Biology and Gene Expression, Bethesda, MD, USA

Centromeres are marked by the centromere-specific histone H3 variant CENP-A/CENH3. Throughout the cell cycle, the constitutive centromere-associated network is bound to CENP-A chromatin, but how this protein network modifies CENP-A nucleosome conformations in vivo is unknown. Here, we purify endogenous centromeric chromatin associated with the CENP-C complex across the cell cycle and analyze the structures by single-molecule imaging and biochemical assays.

View Article and Find Full Text PDF

Interplay between genetics and epigenetics in lung fibrosis.

Int J Biochem Cell Biol

January 2025

Centre for Respiratory Research, Translational Medical Sciences, School of Medicine, University of Nottingham, UK; Nottingham NIHR Biomedical Research Centre, Nottingham, UK; Biodiscovery Institute, University Park, University of Nottingham, UK. Electronic address:

Lung fibrosis, including idiopathic pulmonary fibrosis (IPF), is a complex and devastating disease characterised by the progressive scarring of lung tissue leading to compromised respiratory function. Aberrantly activated fibroblasts deposit extracellular matrix components into the surrounding lung tissue, impairing lung function and capacity for gas exchange. Both genetic and epigenetic factors have been found to play a role in the pathogenesis of lung fibrosis, with emerging evidence highlighting the interplay between these two regulatory mechanisms.

View Article and Find Full Text PDF

Congenital heart disease (CHD) is a prevalent condition characterized by defective heart development, causing premature death and stillbirths among infants. Genome-wide association studies (GWASs) have provided insights into the role of genetic variants in CHD pathogenesis through the identification of a comprehensive set of single-nucleotide polymorphisms (SNPs). Notably, 90-95% of these variants reside in the noncoding genome, complicating the understanding of their underlying mechanisms.

View Article and Find Full Text PDF

Characterizing the regulatory effects of H2A.Z and SWR1-C on gene expression during hydroxyurea exposure in Saccharomyces cerevisiae.

PLoS Genet

January 2025

Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, Edwin S.H. Leong Centre for Healthy Aging, University of British Columbia, Vancouver, British Columbia, Canada.

Chromatin structure and DNA accessibility are partly modulated by the incorporation of histone variants. H2A.Z, encoded by the non-essential HTZ1 gene in S.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!