Background: Short interfering RNAs (siRNAs) can be used to knockdown gene expression in functional genomics. For a target gene of interest, many siRNA molecules may be designed, whereas their efficiency of expression inhibition often varies.
Results: To facilitate gene functional studies, we have developed a new machine learning method to predict siRNA potency based on random forests and support vector machines. Since there were many potential sequence features, random forests were used to select the most relevant features affecting gene expression inhibition. Support vector machine classifiers were then constructed using the selected sequence features for predicting siRNA potency. Interestingly, gene expression inhibition is significantly affected by nucleotide dimer and trimer compositions of siRNA sequence.
Conclusions: The findings in this study should help design potent siRNAs for functional genomics, and might also provide further insights into the molecular mechanism of RNA interference.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2999347 | PMC |
http://dx.doi.org/10.1186/1471-2164-11-S3-S2 | DOI Listing |
Front Immunol
January 2025
Tumor Vaccine and Biotechnology Branch, Office of Cellular Therapy and Human Tissues, Office of Therapeutic Products, Center for Biologics Evaluation and Research, United States Food and Drug Administration (U.S. FDA), Silver Spring, MD, United States.
Introduction: CAR-T cell therapy is associated with life-threatening inflammatory toxicities, partly due to the activation and secretion of inflammatory cytokines by bystander myeloid cells (BMCs). However, due to limited clinical data, it is unclear whether CAR-NK cells cause similar toxicities.
Methods: We characterized the soluble factors (SFs) released by activated human CAR-T and CAR-NK cells and assessed their role in BMC activation (BMCA).
Molecules
December 2024
NRC Institute of Immunology FMBA of Russia, 115552 Moscow, Russia.
N-Acetylgalactosamine (GalNAc) is an efficient and multifunctional delivery tool in the development and synthesis of chemically modified oligonucleotide therapeutics (conjugates). Such therapeutics demonstrate improved potency in vivo due to the selective and efficient delivery to hepatocytes in the liver via receptor-mediated endocytosis, which is what drives the high interest in this molecule. The ways to synthesize such structures are relatively new and have not been optimized in terms of the yields and stages both in lab and large-scale synthesis.
View Article and Find Full Text PDFLipid nanoparticles (LNPs) are the most advanced delivery system currently available for RNA therapeutics. Their development has accelerated since the success of Patisiran, the first siRNA-LNP therapeutic, and the mRNA vaccines that emerged during the COVID-19 pandemic. Designing LNPs with specific targeting, high potency, and minimal side effects is crucial for their successful clinical use.
View Article and Find Full Text PDFBurns
December 2024
Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China. Electronic address:
Aims: This study aimed to investigate whether the histone deacetylase HDAC4 inhibitor, trichostatin A (TSA), could reverse resistance to non-depolarizing muscle relaxants (NDMRs) caused by burn injuries.
Materials And Methods: A rat burn injury model was established, in which TSA was administered to inhibit HDAC4 expression. The potency of rocuronium was assessed through tension tests, and the levels of HDAC4 and myogenin proteins were determined using Western blot.
Oncol Rep
February 2025
Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467‑8601, Japan.
BH3 mimetics are small‑molecule inhibitors of the antiapoptotic Bcl‑2 family and have therapeutic efficacy against hematological malignancies. BH3 mimetic A‑1331852 suppresses colorectal cancer cell proliferation. Progressive resistance to the widely used anticancer agent fluorouracil (5‑FU) is a key reason for colorectal cancer recurrence; therefore, the present study tested if A‑1331852 can suppress the proliferation of 5‑FU‑resistant colorectal cancer cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!