Wheat is the major crop plant in many parts of the world. Elevated temperature-induced changes in photosynthetic efficiency were studied in wheat (T. aestivum) leaves by measuring Chl a fluorescence induction kinetics. Detached leaves were subjected to elevated temperature stress of 35 °C, 40 °C or 45 °C. Parameters such as Fv/Fm, performance index (PI), and reaction centre to absorbance ratio (RC/ABS) were deduced using radial plots from fluorescence induction curves obtained with a plant efficiency analyser (PEA). To derive precise information on fluorescence induction kinetics, energy pipeline leaf models were plotted using biolyzer hp3 software. At 35 °C, there was no effect on photosynthetic efficiency, including the oxygen-evolving complex, and the donor side of PSII remained active. At 40 °C, activity was reduced by 14%, while at 45 °C, a K intermediate step was observed, indicating irreversible damage to the oxygen-evolving complex. This analysis can be used to rapidly screen for vitality and stress tolerance characteristics of wheat growing in the field under high temperature stress.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1438-8677.2009.00319.xDOI Listing

Publication Analysis

Top Keywords

fluorescence induction
16
induction kinetics
12
elevated temperature-induced
8
photosynthetic efficiency
8
temperature stress
8
°c °c
8
oxygen-evolving complex
8
°c
6
analysis elevated
4
temperature-induced inhibition
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!