A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Differential effects of advanced glycation end-products on renal tubular cell inflammation. | LitMetric

Differential effects of advanced glycation end-products on renal tubular cell inflammation.

Nephrology (Carlton)

Division of Nephrology, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China.

Published: May 2011

Aim: The authors recently showed that advanced glycation end-products (AGE) in the form of glycated albumin (GA) upregulated renal tubular expression of interleukin (IL)-8 and soluble intercellular adhesion molecule-1 (sICAM-1), but not other important cytokines known to mediate diabetic nephropathy. This implies that other molecules such as the carbonyl intermediates of AGE or other modified protein lysine-albumin may participate in diabetic tubular injury.

Methods: Human proximal tubular epithelial cells (PTEC) were growth-arrested and exposed to methylglyoxal (MG), MG-bovine serum albumin (BSA)-AGE, carboxymethyllysine (CML)-BSA, AGE-BSA or BSA with or without prior addition of rosiglitazone that was previously shown to attenuate the pro-inflammatory effect of GA alone.

Results: MG-BSA-AGE and AGE-BSA upregulated tubular expression of connective tissue growth factor (CTGF), transforming growth factor (TGF)-β, and vascular endothelial growth factor (VEGF), whereas CML-BSA stimulated expression of IL-6, CCL-2, CTGF, TGF-β and VEGF. These AGE compounds also activated nuclear factor (NF)-κB and their effects were attenuated by pre-incubation with anti-RAGE antibody. MG and BSA did not affect the expression of any of these molecules. Rosiglitazone did not affect the in vitro biological effects of MG, MG-BSA-AGE, AGE-BSA or CML-BSA on PTEC.

Conclusion: AGE exhibit differential inflammatory and fibrotic effects on PTEC via RAGE activation and NF-κB signal transduction. Rosiglitazone had no effect on these responses. Further investigations on compounds that nullify the downstream effects of these AGE are warranted.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1440-1797.2010.01437.xDOI Listing

Publication Analysis

Top Keywords

growth factor
12
advanced glycation
8
glycation end-products
8
renal tubular
8
tubular expression
8
mg-bsa-age age-bsa
8
tubular
5
age
5
differential effects
4
effects advanced
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!