The role of projections from coerulear (A6) and lateral tegmental (A1-A5) noradrenergic cell groups in the induced catecholamine response to (-)-nicotine was studied following lesions to the dorsal (DNAB) or ventral (VNAB) noradrenergic bundle by 6-hydroxydopamine. The lesions produced large reductions in basal noradrenaline levels in hippocampus (after DNAB lesions) and hypothalamus (after VNAB lesions), while not affecting basal levels of dopamine or 5-hydroxytryptamine. Vehicle and sham operated controls showed a significant increase in DOPA accumulation in response to (-)-nicotine (0.8 mg/kg s.c.) following inhibition of amino acid decarboxylase. In DNAB lesioned rats, the response induced by (-)-nicotine in both the hippocampus and hypothalamus was significantly attenuated, whereas in VNAB lesioned rats the induced response was still evident. The effect of (-)-nicotine was also studied in the nucleus accumbens and was found not to be affected by either lesion. These data suggest that increases in catecholamine synthesis in the hippocampus and hypothalamus reflect increased noradrenaline synthesis, and that this effect occurs specifically in noradrenergic projections originating in the locus coeruleus.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0014-2999(90)90179-aDOI Listing

Publication Analysis

Top Keywords

catecholamine synthesis
8
lesions dorsal
8
noradrenergic bundle
8
response --nicotine
8
--nicotine studied
8
lesioned rats
8
hippocampus hypothalamus
8
lesions
5
nicotine-induced catecholamine
4
synthesis lesions
4

Similar Publications

When retrieved, seemingly stable memories can become sensitive to significant events, such as acute stress. The mechanisms underlying these memory dynamics remain poorly understood. Here, we show that noradrenergic stimulation after memory retrieval impairs subsequent remembering, depending on hippocampal and cortical signals emerging during retrieval.

View Article and Find Full Text PDF

Recreational use of nitrous oxide (NO) has risen dramatically over the past decades. This study aimed to examine its rewarding effect and the underlying mechanisms. The exposure of mice to a subanesthetic concentration (20%) of NO for 30 min for 4 consecutive days paired with NO in the morning and paired with the air in the afternoon produced apparent rewarding behavior in the conditioned place preference (CPP) paradigm.

View Article and Find Full Text PDF

O-GlcNAcylation is a post-translational modification characterized by the covalent attachment of a single moiety of GlcNAc on serine/threonine residues in proteins. Tyrosine hydroxylase (TH), the rate-limiting step enzyme in the catecholamine synthesis pathway and responsible for production of the dopamine precursor, L-DOPA, has its activity regulated by phosphorylation. Here, we show an inverse feedback mechanism between O-GlcNAcylation and phosphorylation of TH at serine 40 (TH pSer40).

View Article and Find Full Text PDF

The L-type Ca channel (Ca1.2) is essential for cardiac excitation-contraction coupling. To contribute to the inward Ca flux that drives Ca-induced-Ca-release, Ca1.

View Article and Find Full Text PDF

Update on Hepatorenal Syndrome: From Pathophysiology to Treatment.

Annu Rev Med

January 2025

Division of Gastrointestinal and Liver Diseases, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA; email:

Hepatorenal syndrome-acute kidney injury (HRS-AKI) occurs in the setting of advanced chronic liver disease, portal hypertension, and ascites. HRS-AKI is found in ∼20% of patients presenting to the hospital with AKI, but it may coexist with other causes of AKI and/or with preexisting chronic kidney disease, thereby making the diagnosis challenging. Novel biomarkers such as urinary neutrophil gelatinase-associated lipocalin may be useful.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!