Restoring p53 tumor suppressor activity as an anticancer therapeutic strategy.

Future Oncol

University of Arizona, Arizona Cancer Center, 1515 North Campbell Avenue, Tucson, AZ 85724, USA.

Published: December 2010

Loss of p53 tumor suppressor function is a key event in the genesis of most human tumors. This observation has prompted efforts to restore p53 activity as an anticancer therapeutic approach. Recent developments that have extended our understanding of how p53 activity is regulated and how mutations disrupt that regulation have provided the insight needed to develop therapeutic strategies that take advantage of this knowledge. In this article, we review the strategies for restoring p53 function and some of the new compounds that show promise as antitumor agents in preclinical models.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3039681PMC
http://dx.doi.org/10.2217/fon.10.132DOI Listing

Publication Analysis

Top Keywords

restoring p53
8
p53 tumor
8
tumor suppressor
8
activity anticancer
8
anticancer therapeutic
8
p53 activity
8
suppressor activity
4
therapeutic strategy
4
strategy loss
4
p53
4

Similar Publications

Arsenic-mediated neurodegenerative disorders affect millions of individuals globally, but the specific impact of environmental arsenic on adult cerebellar degeneration and neurogenesis is incompletely understood. Of particular concern is arsenic-induced apoptosis-driven neurodegeneration. Our major objective was to investigate the molecular signaling intricacies associated with arsenic-induced death of cerebellar neurons and to propose folic acid as a possible intervention.

View Article and Find Full Text PDF

Mesenchymal stem cells (MSCs) are promising candidates for regenerative therapies due to their self-renewal and differentiation capabilities. Pathological microenvironments expose MSCs to senescence-inducing factors such as reactive oxygen species (ROS), resulting in MSC functional decline and loss of stemness. Oxidative stress leads to mitochondrial dysfunction, a hallmark of senescence, and is prevalent in aging tissues characterized by elevated ROS levels.

View Article and Find Full Text PDF

Neuroblastoma is the most common extra-cranial solid tumour in children. Over half of all high-risk cases are expected to succumb to the disease even after chemotherapy, surgery, and immunotherapy. Although the importance of MYCN amplification in this disease is indisputable, the mechanistic details remain enigmatic.

View Article and Find Full Text PDF

Docetaxel response in BRCA1,p53-deficient mammary tumor cells is affected by Huntingtin and BAP1.

Proc Natl Acad Sci U S A

December 2024

Department of Infectious Diseases and Pathobiology, Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland.

Taxanes are frequently used anticancer drugs known to kill tumor cells by inducing mitotic aberrations and segregation defects. A defining feature of specific cancers, notably triple-negative breast cancer (TNBC) and particularly those deficient in BRCA1, is chromosomal instability (CIN). Here, we focused on understanding the mechanisms of docetaxel-induced cytotoxicity, especially in the context of BRCA1-deficient TNBC.

View Article and Find Full Text PDF

Gingival overgrowth caused by cyclosporine A is due to increased fibroblast proliferation in gingival tissues. Cell cycle system balances proliferation and anti-proliferation of gingival fibroblasts and plays a role in the maintenance of its population in gingival tissues. When cells detect and respond to abnormalities (e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!