Background: The use of nanoparticles (NPs) in technological applications is rapidly expanding, but the potential health effects associated with NP exposure are still largely unknown. Given epidemiological evidence indicating an association between inhaled ambient ultrafine particles and increased risk of cardiovascular disease morbidity and mortality, it has been suggested that exposure to NPs via inhalation may induce similar cardiovascular responses.

Methods: Male C57BL/6 mice were exposed via whole-body inhalation to either filtered air (FA) or nickel hydroxide (NH) NPs (100, 150, or 900 µg/m(3)) for 1, 3, or 5 consecutive days (5 h/day). At 24-h post-exposure, vascular function in response to a vasoconstrictor, phenylephrine (PE), and a vasodilator, acetylcholine (ACh), was measured in the carotid artery.

Results: Carotid arteries from mice exposed to all concentrations of NH-NPs showed statistically significant differences in graded doses of PE-induced contractile responses compared with those from FA mice. Similarly, vessels from NH-NP-exposed mice also demonstrated impaired vasorelaxation following graded doses of ACh as compared with FA mice.

Conclusions: These results suggest that short-term exposure to NH-NPs can induce acute endothelial disruption and alter vasoconstriction and vasorelaxation. These findings are consistent with other studies assessing vascular tone and function in the aorta, coronary, and mesenteric vessels from mice exposed to motor vehicular exhaust and concentrated ambient particles.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3786415PMC
http://dx.doi.org/10.3109/08958378.2010.521206DOI Listing

Publication Analysis

Top Keywords

mice exposed
12
c57bl/6 mice
8
graded doses
8
mice
6
inhaled nickel
4
nickel nanoparticles
4
nanoparticles alter
4
alter vascular
4
vascular reactivity
4
reactivity c57bl/6
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!