Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We investigate the field dependence of the mobility in a model for a disordered molecular system containing spatial and energetic disorders. In this model we assign an isotropic polarizability to each site and take the site energies to be the site polarization energies, the interaction energy of a charge in the given site with the induced dipoles in the neighboring sites. This model was shown, in a previous publication, to contain short-ranged energetic correlations and we show in this work that this correlation produces a charge mobility proportional to the exponential of the square root of the applied field, the Poole-Frenkel dependence observed in various disordered organic materials, over a significant range of fields. We present an expression for the field dependence of the mobility in terms of the average intersite separation and of the isotropic polarizability of the electronic states, the two model parameters.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.3512633 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!