We describe the cross-linking of poly(4-styrene-sulfonic acid) (PSS) by exposure to ultraviolet (UV) light (λ = 255 nm) under a vacuum. Fourier transform infrared (FT-IR) spectroscopy and X-ray photoelectron spectroscopy (XPS) showed that the photo-crosslinking of PSS resulted from coupling between radicals that were generated in the polymer chains by UV excitation. The photo-cross-linkable characteristics of PSS were employed to fabricate solution-processable, photopatternable, and conductive PSS-wrapped multiwalled carbon nanotube (MWNT) composite thin films by wrapping MWNTs with PSS in water. During photo-cross-linking, the work function of the PSS-wrapped MWNTs decreased from 4.83 to 4.53 eV following cleavage of a significant number of sulfonic acid groups. Despite the decreased work function of the PSS-wrapped MWNTs, the photopatterned PSS-wrapped MWNTs produced good source/drain electrodes for OFETs, yielding a mobility (0.134 ± 0.056 cm²/(V s)) for the TIPS-PEN field-effect transistors fabricated using PSS-wrapped MWNTs as source/drain electrodes that was higher than the mobility of gold-based transistors (0.011 ± 0.004 cm²/(V s)).

Download full-text PDF

Source
http://dx.doi.org/10.1021/am1008826DOI Listing

Publication Analysis

Top Keywords

pss-wrapped mwnts
16
source/drain electrodes
12
field-effect transistors
8
work function
8
function pss-wrapped
8
pss-wrapped
5
mwnts
5
photopatternable poly4-styrene
4
poly4-styrene sulfonic
4
sulfonic acid-wrapped
4

Similar Publications

We describe the cross-linking of poly(4-styrene-sulfonic acid) (PSS) by exposure to ultraviolet (UV) light (λ = 255 nm) under a vacuum. Fourier transform infrared (FT-IR) spectroscopy and X-ray photoelectron spectroscopy (XPS) showed that the photo-crosslinking of PSS resulted from coupling between radicals that were generated in the polymer chains by UV excitation. The photo-cross-linkable characteristics of PSS were employed to fabricate solution-processable, photopatternable, and conductive PSS-wrapped multiwalled carbon nanotube (MWNT) composite thin films by wrapping MWNTs with PSS in water.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!