Thermally induced and photoinduced valence tautomerism in a two-dimensional coordination polymer.

Inorg Chem

State Key Laboratory of Physical Chemistry of Solid Surfaces & College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China.

Published: January 2011

Herein reported is the first two-dimensional coordination polymer capable of undergoing thermally induced and photoinduced valence tautomeric transitions.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic102270hDOI Listing

Publication Analysis

Top Keywords

thermally induced
8
induced photoinduced
8
photoinduced valence
8
two-dimensional coordination
8
coordination polymer
8
valence tautomerism
4
tautomerism two-dimensional
4
polymer reported
4
reported two-dimensional
4
polymer capable
4

Similar Publications

Certain proteins and synthetic covalent polymers experience aqueous phase transitions, driving functional self-assembly. Herein, we unveil the ability of supramolecular polymers (SPs) formed by G4.Cu+ to undergo heating-induced unexpected aqueous phase transitions.

View Article and Find Full Text PDF

Since the widespread usage of plastic materials and inadequate handling of plastic debris, nanoplastics (NPs) and microplastics (MPs) have become global hazards. Recent studies prove that NPs/MPs can induce various toxicities in organisms, with these adverse effects closely related to gut microbiota changes. This review thoroughly summarized the interactions between NPs/MPs and gut microbiota in various hosts, speculated on the potential factors affecting these interactions, and outlined the impacts on hosts' health caused by NPs/MPs exposure and gut microbiota dysbiosis.

View Article and Find Full Text PDF

Photoinduced formation of a platina-α-lactone - a carbon dioxide complex of platinum. Insights from femtosecond mid-infrared spectroscopy.

Phys Chem Chem Phys

January 2025

Abteilung für Molekulare Physikalische Chemie, Clausius-Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Wegelerstraße 12, 53115 Bonn, Germany.

The binding of carbon dioxide to a transition metal is a complex phenomenon that involves a major redistribution of electron density between the metal center and the triatomic ligand. The chemical reduction of the ligand reveals itself unambiguously by an angular distortion of the CO-molecule as a result of the occupation of an anti-bonding π-orbital and a shift of its antisymmetric stretching vibration, ν, to lower wavenumbers. Here, we generate a carbon dioxide complex of the heavier group-10 metal, platinum, by ultrafast electronic excitation and cleavage of CO from the photolabile oxalate precursor, oxaliplatin, and monitored the ensuing primary dynamics with ultrafast mid-infrared spectroscopy.

View Article and Find Full Text PDF

Thermal Analysis of Electromagnetic Induction Heating for Cylinder-Shaped Objects.

Electrophoresis

January 2025

School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington, USA.

Induction heating is one of the cleanest and most efficient methods for heating materials, utilizing electromagnetic fields induced through AC electric current. This article reports an analytical solution for transient heat transfer in a three-dimensional (3D) cylindrical object under induction heating. A simplified form of Maxwell's equations is solved to determine the heat generation inside the cylinder by calculating the current density distribution within the body.

View Article and Find Full Text PDF

Temperature Effects in Conventional and RAFT Photopolymerization.

Macromolecules

January 2025

Department of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford, Ohio 45056, United States.

Photochemical processes are often thought to be temperature-independent. However, photochemical polymerization involves photochemical processes such as light-driven radical generation coupled with thermal-driven reactions such as monomer propagation. The apparent activation energy of propagation, ( ), of a series of three monomers, methyl acrylate (MA), methyl methacrylate (MMA), and styrene (STY), are deduced from Arrhenius analysis of conventional and RAFT photopolymerization of these monomers across a range of corresponding temperatures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!