In this paper, we present a new method to realize anisotropy by restricting a droplet on an unstructured Si hydrophobic domain between two superhydrophobic strips fabricated by femtosecond laser. The water contact angles and corresponding water baseline length were investigated. The results showed that anisotropy would vary with the volume-induced pinning-depinning-repinning behavior of the droplet. Furthermore, through the observation of water response on small Si domain, the adhesive force of the structure is proven to be the key factor giving rise to the anisotropy wetting. This phenomenon could potentially be used as a model for fundamental research, and such structures could be utilized to control large volume in microfluidic devices, lab-on-chip system, microreactors, and self-cleaning surfaces.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/la103293j | DOI Listing |
Sci Rep
January 2025
Department of Physics, University of Ottawa, Ottawa, ON, K1N 6N5, Canada.
We report a nonlinear terahertz (THz) detection device based on a metallic bull's-eye plasmonic antenna. The antenna, fabricated with femtosecond laser direct writing and deposited on a nonlinear gallium phosphide (GaP) crystal, focuses incoming THz waveforms within the sub-wavelength bull's eye region to locally enhance the THz field. Additionally, the plasmonic structure minimizes diffraction effects allowing a relatively long interaction length between the transmitted THz field and the co-propagating near-infrared gating pulse used in an electro-optic sampling configuration.
View Article and Find Full Text PDFNat Commun
January 2025
The Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, PR China.
Obstructive sleep apnea is a globally prevalent concern with significant health impacts, especially when coupled with comorbidities. Accurate detection and localization of airway obstructions are crucial for effective diagnosis and treatment, which remains a challenge for traditional sleep monitoring methods. Here, we report a catheter-based flexible pressure sensor array that continuously monitors soft tissue pressure in the upper airway and facilitates at the millimeter level.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Physics, Pusan National University, Busan 46241, Republic of Korea.
Metal electrode deposition is universally adopted in the community for optoelectronic device fabrication, inducing hybridization at electrode interfaces, and allows efficient extraction or injection of photocarriers. However, hybridization-induced midgap states increase photocarrier recombination pathways, creating a paradoxical trade-off. Here, we discovered that efficient photocarrier extraction and a long photocarrier lifetime can be achieved simultaneously in MoS/van der Waals Au contact, minimizing photocarrier loss at the interface.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan.
Optical vortices possess a helical phase wavefront with central phase dislocation and orbital angular momentum. We demonstrated three-dimensional microstructure formation using a femtosecond optical vortex beam. Two-photon polymerization of photocurable resin was induced by long-term exposure, resulting in the fabrication of cylindrical structures.
View Article and Find Full Text PDFSensors (Basel)
November 2024
Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan 430205, China.
An all-fiber vibration sensor based on the Fabry-Perot interferometer (FPI) is proposed and experimentally evaluated in this study. The sensor is fabricated by introducing a Fabry-Perot cavity to the single-mode fiber using femtosecond laser ablation. The cavity and the tail act together as a cantilever beam, which can be used as a vibration receiver.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!