The electric-double-layer (EDL) formed at liquid/solid interfaces provides a broad and interdisciplinary attraction in terms of electrochemistry, photochemistry, catalysts, energy storage, and electronics because of the large interfacial capacitance coupling and its ability for high-density charge accumulation. Much effort has recently been devoted to the fundamental understanding and practical applications of such highly charged EDL interfaces. However, the intrinsic nature of the EDL charging, whether it is electrostatics or electrochemistry, and how to distinguish them are far from clear. Here, by combining electrical transport measurements with electrochemical impedance spectroscopy (EIS), we studied the charging mechanisms of highly charged EDL interfaces between an ionic liquid and oxide semiconductor, ZnO. The direct measure for mobile carriers from the Hall effect agreed well with that from the capacitance-voltage integration at 1 Hz, implying that the pseudocapacitance does not contribute to carrier transport at EDL interfaces. The temperature-frequency mapping of EIS was further demonstrated as a "phase diagram" to distinguish the electrostatic or electrochemical nature of such highly charged EDL interfaces with densities of up to 8 × 10(14) cm(-2), providing a guideline for electric-field-induced electronic phenomena and a simple method for distinguishing electrostatic and electrochemical charging in EDLTs not only based on a specific oxide semiconductor, ZnO, but also commonly applicable to all types of EDL interfaces with extremely high-density carrier accumulation.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja108912xDOI Listing

Publication Analysis

Top Keywords

edl interfaces
20
electrostatic electrochemical
12
highly charged
12
charged edl
12
electrochemical nature
8
oxide semiconductor
8
semiconductor zno
8
edl
7
interfaces
6
nature liquid-gated
4

Similar Publications

A coarse-grained model of clay colloidal aggregation and consolidation with explicit representation of the electrical double layer.

J Colloid Interface Sci

December 2024

Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ 08544, USA; High Meadows Environmental Institute, Princeton University, Princeton, NJ 08544, USA. Electronic address:

Knowledge Gap: The aggregation of clay minerals in liquid water exemplifies colloidal self-assembly in nature. These negatively charged aluminosilicate platelets interact through multiple mechanisms with different sensitivities to particle shape, surface charge, aqueous chemistry, and interparticle distance and exhibit complex aggregation structures. Experiments have difficulty resolving the associated colloidal assemblages at the scale of individual particles.

View Article and Find Full Text PDF

To elucidate interfacial dynamics during electrocatalytic reactions, it is crucial to understand the adsorption behavior of organic molecules on catalytic electrodes within the electric double layer (EDL). However, the EDL structure in aqueous environments remains intricate when it comes to the electrochemical amination of acetone, using methylamine as a nitrogen source. Specifically, the interactions of acetone and methylamine with the copper electrode in water remain unclear, posing challenges in the prediction and optimization of reaction outcomes.

View Article and Find Full Text PDF

Aqueous zinc-ion batteries promise low-cost and safe grid storage, but their practical application is hindered by poor Zn anode reversibility, primarily due to dendrite formation and water-induced side reactions in the electric double layer (EDL) structure. Herein, a monolayer of hydrophobic carbon dots (CDs) was dynamically constructed at the electrode/electrolyte interface. The trace-added hydrophobic CDs in the electrolyte reconstruct a hydrophobic and favorable EDL structure, suppressing water-induced side reactions in the inner Helmholtz layer and facilitating the desolvation of hydrated zinc ions at the outer Helmholtz layer.

View Article and Find Full Text PDF

The synergistic effect induced by "Z-bond" between cations and anions achieving a highly reversible zinc anode.

J Colloid Interface Sci

December 2024

Zhejiang Provincial Engineering Research Center of Oxide Semiconductors for Environmental and Optoelectronic Applications, Institute of Wenzhou, Zhejiang University, Wenzhou 325006, PR China; State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, PR China. Electronic address:

Due to their high energy density, low cost, and environmental friendliness, aqueous zinc-ion batteries are considered a potential alternative to Li-ion batteries. However, dendrite growth and parasitic reactions of water molecules limit their practical applications. Herein, an ionic liquid additive, 1-butyl-3-methylimidazolium Bis(fluorosulfonyl)imide (BMImFSI), is introduced to regulate the electrical double layer (EDL).

View Article and Find Full Text PDF

Hybrid nanoplasmonic structures composed of subwavelength apertures in metallic films and nanoparticles have recently been demonstrated as ultrasensitive plasmonic sensors. This work investigates the electrokinetically driven propagation of the assembly mechanism of the metallic nanoparticles through nanoapertures. The Debye-Hückel approximation for a symmetric electrolyte solution with overlapping electrical double layers (EDLs) is used to obtain an analytical solution to the problem.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!