A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

DNA repair and the control of DNA methylation. | LitMetric

DNA repair and the control of DNA methylation.

Prog Drug Res

Institute of Biochemistry and Genetics, Department of Biomedicine, University of Basel, Mattenstrasse 28, CH-4058 Basel, Switzerland.

Published: January 2011

The successful establishment and stable maintenance of cell identity are critical for organismal development and tissue homeostasis. Cell identity is provided by epigenetic mechanisms that facilitate a selective readout of the genome. Operating at the level of chromatin, they establish defined gene expression programs during cell differentiation. Among the epigenetic modifications in mammalian chromatin, the 5'-methylation of cytosine in CpG dinucleotides is unique in that it affects the DNA rather than histones and the biochemistry of the DNA methylating enzymes offers a mechanistic explanation for stable inheritance. Yet, DNA methylation states appear to be more dynamic and their maintenance more complex than existing models predict. Also, methylation patterns are by far not always faithfully inherited, as best exemplified by human cancers. Often, these show widespread hypo- or hypermethylation across their genomes, reflecting an underlying epigenetic instability that may have contributed to carcinogenesis. The phenotype of unstable methylation in cancer illustrates the importance of quality control in the DNA methylation system and implies the existence of proof-reading mechanisms that enforce fidelity to DNA methylation in healthy tissue. Fidelity seems particularly important in islands of unmethylated CpG-rich sequences where an accurate maintenance of un- or differentially methylated states is critical for stable expression of nearby genes. Methylation proof-reading in such sequences requires a system capable of recognition and active demethylation of erroneously methylated CpGs. Active demethylation of 5-methylcytosine has been known to occur for long, but the underlying mechanisms have remained enigmatic and controversial. However, recent progress in this direction substantiates a role of DNA repair in such processes. This review will address general aspects of cytosine methylation stability in mammalian DNA and explore a putative role of DNA repair in methylation control.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-3-7643-8989-5_3DOI Listing

Publication Analysis

Top Keywords

dna methylation
16
dna repair
12
dna
10
methylation
9
control dna
8
cell identity
8
active demethylation
8
role dna
8
repair control
4
methylation successful
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!