The application of N-heterocyclic carbene complexes as active sites in materials other than catalysis has been remarkably scarce. Inspired by the - often misleading - 'carbene' label, which implies a substantial degree of M = C pi bonding, we have been interested in evaluating the potential of N-heterocyclic carbene complexes as building blocks for constructing electronically active materials. Electron mobility via the metal-carbon bond has been investigated in monometallic imidazol-2-ylidene complexes and subsequently expanded to polymetallic systems. In particular, ditopic benzobisimidazolium-derived ligands have been explored for the fabrication of bimetallic molecular switches and main-chain conjugated organometallic polymers. Electrochemical analyses have allowed the degree of electronic coupling between the metal sites to be quantified and the key parameters that govern the intermetallic communication to be identified.

Download full-text PDF

Source
http://dx.doi.org/10.2533/chimia.2010.184DOI Listing

Publication Analysis

Top Keywords

n-heterocyclic carbene
12
carbene complexes
12
potential n-heterocyclic
8
electronically active
8
active materials
8
complexes
4
complexes components
4
components electronically
4
materials application
4
application n-heterocyclic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!