An immunoglobulin G (IgG) subclass response against equine herpesvirus type 1 (EHV-1) infection was investigated in horses that were naïve to EHV-1/4 and those that had previously been exposed to EHV-4. The IgG subclass response was determined by an ELISA using EHV-1-specific recombinant gG protein as an antigen. In most horses naïve to EHV-1/4, IgGa, IgGb, and IgG(T) were induced after experimental infection with EHV-1. In contrast, a subclass response dominated by IgGa and IgGb, with no apparent increase in IgG(T), was observed after EHV-1 infection in horses previously infected with EHV-4. Horses naturally infected with EHV-1 in the field showed similar responses. These results indicated that pre-infection with EHV-4 induced a Th-1-biased IgG subclass response against subsequent EHV-1 infection.

Download full-text PDF

Source
http://dx.doi.org/10.1292/jvms.10-0456DOI Listing

Publication Analysis

Top Keywords

subclass response
20
igg subclass
16
ehv-1 infection
12
th-1-biased igg
8
response equine
8
equine herpesvirus
8
herpesvirus type
8
horses infected
8
horses naïve
8
naïve ehv-1/4
8

Similar Publications

Photosensitizable ZIF-8 BioMOF for Stimuli-Responsive Antimicrobial Phototherapy.

Mol Pharm

January 2025

Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing (CIAB), Department of Biotechnology (DBT), Government of India, Sector 81 (Knowledge City), S.A.S. Nagar, Mohali 140306, Punjab, India.

Resistant pathogens are increasingly posing a heightened risk to healthcare systems, leading to a growing concern due to the lack of effective antimicrobial treatments. This has prompted the adoption of antimicrobial photodynamic therapy (aPDT), which eradicates microorganisms by generating reactive oxygen species (ROS) through the utilization of a photosensitizer, photons, and molecular oxygen. However, a challenge arises from the inherent characteristics of photosensitizers, including photobleaching, aggregation, and self-quenching.

View Article and Find Full Text PDF

Identification and functional characterization of the C2H2 ZFP transcription factor CmSUP7 in regulating melon plant growth and fruit development.

Plant Physiol Biochem

January 2025

Key Laboratory of Herbage & Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China. Electronic address:

The SUPERMAN (SUP) proteins, which belong to the single C2H2 zinc finger proteins (ZFP) subclass, participate in various aspects of gene regulation in plant morphogenesis and stress response, but their role in melon (Cucumis melo) is still largely unknown. We identified a total of 28 CmSUP genes in the melon genome, all containing QALGGH conserved domain. Collinearity analysis showed that melon had several homologous gene pairs with Arabidopsis and tomato, indicating the gene duplication events during the evolution.

View Article and Find Full Text PDF

Background And Aims: Gastrointestinal motility persists when peripheral cholinergic signaling is blocked genetically or pharmacologically, and a recent study suggests nitric oxide drives propagating neurogenic contractions.

Methods: To determine the neuronal substrates that underlie these contractions, we measured contractile-associated movements together with calcium responses of cholinergic or nitrergic myenteric neurons in un-paralyzed ex vivo preparations of whole mouse colon. We chose to look at these two subpopulations because they encompass nearly all myenteric neurons.

View Article and Find Full Text PDF

At the end of 2019, SARS-CoV-2 emerged and rapidly spread, having a profound negative impact on human health and socioeconomic conditions. In response to this unprecedented global health crisis, significant advancements were made in the mRNA vaccine technology. In this study, we have compared the difference between two SARS-CoV-2 receptor-binding domain (RBD) mRNA-Lipid nanoparticle (LNP) vaccines prepared from two different ionizable cationic lipids: ALC-0315 and MC3.

View Article and Find Full Text PDF

Atp24δ8, a p24 family member, regulates the unfolded protein response and ER stress tolerance in Arabidopsis.

Int J Biol Macromol

January 2025

Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, School of Life Sciences, Guizhou Normal University, Guiyang 550025, China. Electronic address:

ER stress activates the unfolded protein response (UPR), a critical mechanism for maintaining cellular homeostasis in plants. The p24 protein family is known to be involved in protein trafficking between the endoplasmic reticulum (ER) and the Golgi apparatus, but its role in ER stress remains unclear in plants. In this study, we found that Atp24δ8(delta8), a member of the δ-2 subclass of the p24 family, is significantly upregulated in response to tunicamycin-induced ER stress.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!