A novel metal-organic replica of α-PbO(2) exhibits high capacity for capture of nerve agent surrogate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja101440z | DOI Listing |
Nanomaterials (Basel)
November 2024
Southern Polytechnic College of Engineering and Engineering Technology, Kennesaw State University, Marietta, GA 30060, USA.
AlGaN is attractive for fabricating deep ultraviolet (DUV) optoelectronic and electronic devices of light-emitting diodes (LEDs), photodetectors, high-electron-mobility field-effect transistors (HEMTs), etc. We investigated the quality and optical properties of AlGaN films with high Al fractions (60-87%) grown on sapphire substrates, including AlN nucleation and buffer layers, by metal-organic chemical vapor deposition (MOCVD). They were initially investigated by high-resolution X-ray diffraction (HR-XRD) and Raman scattering (RS).
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2024
Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China.
In addressing the demand for hierarchically mesoporous metal-organic frameworks (HMMOFs) with adjustable large mesopores, a method based on the synergistic effects of low-temperature microemulsions and Hofmeister ions is developed. Low temperature dramatically enhanced the solubility of hydrophobic solvent in the microemulsion core, enlarging the mesopores in HMMOFs replica. Meanwhile, Hofmeister salt-in ions continuously controlled mesopore expansion by modulating the permeability of swelling agent into the microemulsion core.
View Article and Find Full Text PDFNanoscale
June 2023
Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland.
Defects play a very important role in semiconductors and only the control over the defect properties allows the implementation of materials in dedicated applications. We present an investigation of the UV luminescence of defects in hexagonal boron nitride (h-BN) grown by Metal Organic Vapor Phase Epitaxy (MOVPE). Such intentionally introduced defects are important for applications like deep UV emission and quantum information.
View Article and Find Full Text PDFACS Cent Sci
June 2022
Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China.
The nanoarchitecture engineering of metal-organic frameworks (MOFs) is a fascinating but intellectually challenging concept that opens up avenues for both tailoring the properties of MOFs and expanding their applications. Herein, we report the confined growth of ZIF-8 single crystals in a three-dimensionally ordered (3DO) macroporous polystyrene replica and reveal that their growth patterns, morphologies, and nanoarchitectures can be highly engineered using the concentration of the precursor. Impressively, the favorable in situ confined growth enables the successful fabrication of 3DO sphere-assembled ZIF-8 single crystals or 3DO single-crystalline ZIF-8 sphere arrays when a low- or high-concentration precursor solution, respectively, is used as the feedstock.
View Article and Find Full Text PDFWe study an unusual effect of spectral-band replication in the optical spectra of dimers, consisting of spherical nanoparticles or nanodisks with a silver core and a J-aggregate shell of TDBC-dye. It consists in the emergence of a doubled number of plexcitonic spectral bands compared to the case of a plasmonic dimer and in narrow peaks associated with the resonances of the J-aggregate shell. The plexcitonic bands can be divided into two groups: the "original" bands, accurately reproducing plasmonic peaks, and their "replicas," with a specific mutual arrangement and intensity distributions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!