Acidic and metal-rich waters produced by sulfide decomposition at mining sites are termed acid mine drainage (AMD). They precipitate a number of minerals, very often sulfates. The recent advances in thermodynamic properties and crystallography of these sulfates are reviewed here. There is a reasonable amount of data for the divalent (Mg, Ni, Co, Fe(2+), Cu, Zn) sulfates and these data may be combined with and optimized by temperature-relative humidity brackets available in the literature. For the sulfates with Fe(3+), most data exist for jarosite; for other minerals and phases in this system, a few calorimetric studies were reported. No data whatsoever are available for the Fe(2+)-Fe(3+) sulfates. A significant advance is the development of the Pitzer model for Fe(3+)sulfate solutions and its confrontation with the available thermodynamic and solubility data. In summary, our knowledge about the thermodynamic properties of the AMD sulfates is unsatisfactory and fragmented.

Download full-text PDF

Source
http://dx.doi.org/10.2533/chimia.2010.699DOI Listing

Publication Analysis

Top Keywords

acid mine
8
mine drainage
8
thermodynamic properties
8
sulfates
6
data
5
advances gaps
4
gaps knowledge
4
knowledge thermodynamics
4
thermodynamics crystallography
4
crystallography acid
4

Similar Publications

Chronic Radium-226 toxicity to and oxidative stress in the aquatic invertebrate .

Toxicol Res (Camb)

February 2025

Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK S7N 5B3, Canada.

The mining industry, including uranium mining and milling, is of high importance in Canada. It is, however, important to consider that ore processing can result in the creation of by-products that contain radionuclides such as radium-226 (Ra). Even with the strict discharge regulations in place, there is limited evidence to suggest that the current Canadian regulatory thresholds for Ra are protective for aquatic life.

View Article and Find Full Text PDF

Rare earth elements (REEs) are essential for many clean energy technologies. Yet, they are a limited resource currently obtained through carbon-intensive mining. Here, bio-scaffolded proteins serve as simple, effective materials for the recovery of REEs.

View Article and Find Full Text PDF

Tulip mild mottle mosaic disease, caused by tulip mild mottle mosaic virus (TMMMV, species Ophiovirus tulipae), was first reported in Japan in 1979. TMMMV has a negative-sense ssRNA genome and is closely related to ophioviruses such as Mirafiori lettuce big vein virus (MLBVV, Ophiovirus mirafioriense). However, its complete nucleotide sequence has not yet been reported.

View Article and Find Full Text PDF

Acid fracturing fluids can effectively improve the microporous structure of coal, thereby enhancing the permeability of coal seam and the efficiency of gas drainage. To explore the effects of acid fracturing fluids on the pore structure modification of coal samples from different coal ranks, hydrochloric acid-based acid fracturing fluids were prepared and used to soak four types of medium to high-rank coal in an experiment. High-pressure mercury intrusion and liquid nitrogen adsorption techniques results demonstrated that the acid fracturing fluid can effectively alter the pore structure of coal.

View Article and Find Full Text PDF

Recent genome mining work revealed that unexplored habitats exhibit great potential for discovering new nonribosomal peptides (NRPs) and ribosomally synthesized and post-translationally modified peptides (RiPPs). Lanthipeptides are a group of RiPPs exhibiting a variety of biological functions. They are characterized by the presence of the thioether-containing bis-amino acids lanthionine and/or methyllanthionine.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!