A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Math1 gene transfer based on the delivery system of quaternized chitosan/Na-carboxymethyl-beta-cyclodextrin nanoparticles. | LitMetric

Mammalian cochlear hair cells don't regenerate naturally after injury, which usually leave permanent hearing loss. Math1 gene is a positive regulator of hair cell differentiation during cochlear development and was proved to be very critical in hair cell regeneration in deaf animals. Generating new cochlear hair cells by forced Math1 expression may be a cure for hearing loss. However, satisfying gene delivering vectors in gene therapy are not available. We combined quaternized chitosan (QCS) with Na-carboxymethyl-beta-cyclodextrin (CM-beta-CD) as novel non-viral vector, which adsorbs pRK5-Math1-EGFP perfectly at the mass ratio of 4:1. In vitro cell transfection can reach a 40% transfect efficiency and relatively low cytotoxity than liposomes. These results suggest that QCS/CM-beta-CD nanoparticle complexes could be a novel non-viral gene carrier in further clinical application.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2010.2822DOI Listing

Publication Analysis

Top Keywords

math1 gene
8
cochlear hair
8
hair cells
8
hearing loss
8
hair cell
8
novel non-viral
8
gene transfer
4
transfer based
4
based delivery
4
delivery system
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!