The chiral phospholipids 1,2-bis-(10,12-tricosadiynoyl)-sn-glycero-3-phosphocholine (DC8,9 PC) can self assemble into lipid nanotubules. This hollow cylindrical supramolecular structure shows promise in a number of biotechnological applications. The mechanism of lipid tubule formation was initiated by assembling of lipid bilayer sheets from amphiphilic solution. Upon cooling, small ribbons were detached from the sheets and rolled up into helical tubules. The lipid tubules obtained were 0.6-0.8 microm in diameter and approximately 50 microm in length. Raman spectra of individual polymerized lipid tubules were measured by focused laser excitation of 532 nm leading to intense and reproducible Raman spectra. The chirality of lipid tubules was investigated by atomic force microscopy (AFM) and confocal Raman microscopy. We report the Raman mapping images revealing helical tubular profiles of C=C stretching and C[triple bond]C stretching of lipid tubules. Circular dichroism property of lipid tubules has also been probed with a 532 nm laser.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jnn.2010.2754 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!