The titania showing reversible resistive switching are attractive for today's semiconductor technology in nonvolatile random-access memories. A novel fabrication method for titania resistive switching device with vertical structure is proposed. First, the Pt electrode was fabricated the bottom using conventional photolithography and chemical etching technique. Next, the titania thin films with the thickness about 50 nm was deposited on the bottom electrode by electron beam evaporation (EBE). Then, the trench of photoresist for electrode deposit was etched with mild chemical process to preserve the original structure of titania layer. After that, the platinum was deposited in the trench of photoresist using ion sputter. A final lift-off process to define the Pt top electrodes was performed with acetone in an ultrasonic bath to remove the resist. The resistive bistability was observed in this device. The on-threshold voltage is +1.5 V and the off-threshold voltage is -0.6 V. The resistance ratio between the two stable states of the device including Al electrode is approximately 1 x 10(3), the state is nonvolatile and the retention-time test performed over an hour in sweeping mode measurement. The results indicate the forming and rupture of conductive channel relate to the defects and distributing of oxygen vacancy. This method is low-cost, high-yielding, and easy to implement, which is applicable to the fabrication of nonvolatile memories.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2010.2874DOI Listing

Publication Analysis

Top Keywords

resistive switching
12
novel fabrication
8
fabrication method
8
method titania
8
titania resistive
8
switching device
8
trench photoresist
8
titania
5
resistive
4
device
4

Similar Publications

Purpose: Mortality and morbidity of patients with bloodstream infection (BSI) remain high despite advances in diagnostic methods and efforts to speed up reporting. This study investigated the impact of reporting rapid Minimum Inhibitory Concentration (MIC)-results in Gram negative BSIs with the ASTar system (Q-linea, Uppsala, Sweden) on the adaptation of empirically started antimicrobial therapy. We performed a real-world study during which antimicrobial susceptibility testing (AST) results were instantly reported to the treating physician in an established multidisciplinary antimicrobial stewardship setting.

View Article and Find Full Text PDF

Laser reduction of graphene oxide (GO) is a promising approach for achieving flexible, robust, and electrically conductive graphene/polymer composites. Resulting composite materials show significant technological potential for energy storage, sensing, and bioelectronics. However, in the case of insulating polymers, the properties of electrodes show severely limited performance.

View Article and Find Full Text PDF

Real-world data on HIV drug resistance (HIVDR) after transitioning to tenofovir disoproxil fumarate/lamivudine/dolutegravir (TLD) are limited. We assessed HIVDR rates and patterns in clients with virological failure (VF) after switching from an NNRTI-based regimen to TLD. A cross-sectional study was conducted in Gaza, Mozambique (August 2021-February 2022), including adults on first-line ART for ≥12 months who transitioned to TLD and had unsuppressed viral load (VL) ≥ 1000 copies/mL six months post-transition.

View Article and Find Full Text PDF

The treatment landscape for advanced melanoma has transformed significantly with the advent of BRAF and MEK inhibitors (BRAF/MEKi) targeting V600 mutations, as well as immune checkpoint inhibitors (ICI) like anti-PD-1 monotherapy or its combinations with anti-CTLA-4 or anti-LAG-3. Despite that, many patients still do not benefit from these treatments at all or develop resistance mechanisms. Therefore, prognostic and predictive biomarkers are needed to identify patients who should switch or escalate their treatment strategies or initiate an intensive follow-up.

View Article and Find Full Text PDF

The SiC MOSFET with an integrated SBD (SBD-MOSFET) exhibits excellent performance in power electronics. However, the static and dynamic characteristics of this device are influenced by a multitude of parameters, and traditional TCAD simulation methods are often characterized by their complexity. Due to the increasing research on neural networks in recent years, such as the application of neural networks to the prediction of GaN JBS and Finfet devices, this paper considers the application of neural networks to the performance prediction of SiC MOSFET devices with an integrated SBD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!